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Abstract— Mobile communication is nowadays taken for
granted. Having started primarily as a service for speech
communication, data service and mobile Internet access
are now driving the evolution of network infrastructure.
Operators are facing the challenge to match the demand
by continuously expanding and upgrading the network
infrastructure. However, the evolution of the customer’s
demand is uncertain.

We introduce a novel (long-term) network planning
approach based on multistage stochastic programming,
where demand evolution is considered as a stochastic
process and the network is extended as to maximize the
expected profit. The approach proves capable of designing
large-scale realistic UMTS networks with a time-horizon
of several years. Our mathematical optimization model, the
solution approach, and computational results are presented
in this paper.

Keywords— UMTS, Network Evolution,
Stochastic Programming

Multistage,

I. INTRODUCTION

Telecommunication is fundamental to the information
society we live in. In the German market in the year
2009, for example, 19 million users generated over 33
million gigabyte of traffic using mobile data services.
The 3rd generation networks (3G or UMTS) in Germany
comprise over 39000 sites with some 120000 cells in
total. From 1998 to 2008, the four network operators
in Germany invested over 28 billion euros into their
infrastructure (all figures taken from [1]).

A careful allocation of the resources is thus crucial
for the profitability of a network operator: a network
should be dimensioned to match customers’ demand. As
this demand evolves over time, the infrastructure has
to evolve accordingly. The demand evolution is hard to

This work is based on a diploma thesis in mathematics by Jonas
Schweiger at Technische Universitéit Berlin, Germany.

predict, however, and thus constitutes a strong source of
uncertainty. Strategic network planning has to take this
uncertainty into account, and the planned network evolu-
tion should be adaptable to changing market conditions.
The application of advanced planning methods under the
consideration of uncertainty can improve the profitability
of the network and creates a competitive advantage.

Planning of wireless networks is a challenging task
and automated planning procedures are required in cur-
rent and future applications such as LTE. We contribute
by proposing a planning framework which is suitable
for several technologies and demonstrate the practical
applicability by performing computational experiments
using realistic, large-scale planning scenarios. We choose
a setting that allows to perform experiments on realistic
data without guessing too many parameters. This is
nowadays the case for the introduction of UMTS, start-
ing around the year 2003. Therefore, a network evolution
from the year 2004 onwards is considered. Most relevant
parameters have become publicly accessible and are no
longer a trade secret of the industry.

A popular approach to evaluate investment opportu-
nities in several domains are real options [14]. The real
options approach treats investment projects as options on
the resulting future cash-flows and uses the financial mar-
ket for a risk-neutral monetary valuation of investment
opportunities. Real options have been applied in several
applications, including telecommunications (see [5], for
example). In order to properly apply the theory of real
options, the project has to be embedded in an appropriate
market. This is hardly possible in our application.

Stochastic programming has been suggested to value
real options in the absence of a market embedding, see de
Neufville and Wang [16], for example. A risk-adjusted
discount rate has to be used and the result is an implicit
evaluation of la scenario tree. Since the evolution of
the network can be divided into several stages, multi-



stage stochastic programming is a suitable framework
to model strategic telecommunication network planning.
We refer to Dentcheva, Ruszczyniski and Shapiro [2] for
an introduction to stochastic programming.

This paper is organized as follows: In the Section II,
we introduce the system model that describes UMTS
networks. In Section III, we describe our model of the
uncertain parameter and the construction of a scenario
trees. We formulate the optimization model for the net-
work planning problem under uncertainty in Section IV.
Computational experiments verify the applicability of
our approach and are presented in Section V. Section VI
concludes the paper.

II. A MODEL FOR SERVICE COVERAGE

Coverage and capacity are the main determinants
of UMTS network performance. Coverage is primarily
treated as a function of the received signal level, while
(soft) capacity is a matter of interference and resources.
The interplay of signal strength, signal quality, and cell
capacity is highly complex for UMTS. For detailed de-
scriptions of UMTS radio networks and their intricacies
we refer to [3], [11], [10].

In this section, we first present a simplified model
of UMTS radio network performance that allows for
answering the question of interest in network planning,
namely, which of the (anticipated) traffic demand can
be served by a given network configuration. We then
introduce the constraints to be faced during an network
roll-out. We finally sketch how a spatial traffic demand
profile can be obtained on the basis of a reference service
and a population map.

A. The Ability of a Network to Satisfy Service Demand

Simplified models can capture network coverage and
capacity sufficiently well for the purposes of strategic
network planning. The basic idea is to determine the
area in which all of the traffic demand can be served.
We derive such a model in two steps. First, the notion
of a cell’s coverage area is introduced. This is the area
in which the cell’s signal can be received with a strong
enough level to allow for basic communication in the
presence of no to little interference. Next, the notion of
a cell’s service area is defined. This is the area from
which the traffic demand can be served in the presence
of inter-cell interference assuming that surrounding cell’s
are equally loaded.

This work is based on Geerdes [3], and we adopt the
notation and definitions from there.

1) Cells: For our purposes a radio network is de-
scribed by a collection C of cells installed at sites. Each
of the cells is associated with radio parameters such as
pilot transmission power, antenna height, antenna type,
the dominant radiation direction as determined by the
azimuth as well as mechanical and electrical tilt. A site
typically hosts three cells.

2) The Coverage Area of a Cell: The pilot signal
emitted by the transmission unit of a cell ¢ € C is the
basis for network access by the mobile devices. Mobile
devices determine the signal strength of the surrounding
cells by sensing the cell’s pilot channel. A signal level of
some threshold 7p;o¢ is required for successful receptions

(P)

Yi(2)p; = Tpilot
where p;, ’ denotes the transmission power on the pilot
channel and ;(x) the signal attenuation of cell 7 to point
x in the planning area A.

We denote the area in which (1) is met for a cell as
the cell’s coverage area. That is, outside of this area
coverage cannot be assumed. Inside of this area, radio
service may or may not be available depending on the
desired service and the level of interference.

3) The Service Area of a Cell: The cell load describes
the amount by which the capacity of a cell is used
and is an important performance indicator for wireless
networks. In the downlink transmission direction (that is,
from the cell to the mobile devices), the cell load is the
fraction of the total available transmission power that is
required to service the demand.

The definition of a cell’s service area ultimately bases
on the ability to compute cell load for a specific traffic
demand scattered across the cell’s coverage area in the
presence of interference. In a simplified version, the cell
load can be estimated using a generalized pole capacity
equation, which is described in detail by Geerdes [3].

This simplified capacity model can still take many
of the effects linked to UMTS into account such as
power control on dedicated transmission links, intra-
and inter-cell interference, noise, service specific carrier-
to-interference ratios (CIR), a rich service mix, and
spatially heterogeneous service demand.

For the purpose of our work here, the most important
property is that this capacity model can be used to
define the service area of a cell as the maximal subset
of the coverage area from which all demand can be
serviced without exceeding a given load threshold. We
use the threshold of 60 %, which is common in network
dimensioning.

We now sketch how the service area is algorithmically
determined. Further details can be found in [12]. In
network planning, signal propagation path-losses are
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Fig. 1. Service area of a cell for different load intensities

typically predicted for pixels of a resolution between
20m and 50 m with an accuracy of 1dB. The coverage
area can thus be arranged into a sequence of sets, where
each set contains its predecessor. The first set comprises
the pixel with minimum path-loss, the second set the
pixel with the least two path-loss values, and so on.
In a given spatial service demand map, each pixel is
associated with its individual demand. By definition of
the set sequence above, the cell load grows along the
sequence. The service area is the last pixel set for which
the cell load threshold is not exceeded.

In an empty network the coverage and service areas
coincide. With increasing traffic the capacity eventually
no longer suffices to service the demand at the cell
borders and the service areas shrink.

4) Technology Upgrades: Several network features
are available to increase the efficiency of a UMTS
network; the activation of additional frequency block,
enhanced modulation and coding schemes and alike.
We refer to these measures as technology upgrades.
Technology upgrades reduce the impact of a single user
onto the cell load and, thus, add capacity to the system.
We take account for this by scaling the user intensity.
Figure 1 shows the service area of a cell for different
upgrades, i.e., load intensities.

B. Network Evolution

A key driver for the development of the network over
time is the (anticipated) evolution of the traffic demand.
A network design that is fit to service a specific traffic
load intensity will eventually become overloaded when
the traffic scales up. For the purpose of strategic network
planning, the network shall be evolved in such a way that
overload is penalized.

By construction of the cell service areas, we assume
that the demand in a pixel can be satisfied if and only if it
lies in the service area of some active cell. Consequently
revenues are generated within the service areas of active
cells and the operator wants to choose a set of cells that
maximizes the overall (discounted) profit.

In the beginning of the life cycle of a service, the
traffic first increases slowly. In case of a successful
service, a steep increase is then observed after some
time and the network gets populated and eventually
overloaded. With increasing traffic, the service areas
of the cells scale down and penalize overload. Pixel
whose demand was initially satisfied, then may cease
to be serviced. Since the operator then losses revenues,
the construction of additional cells might be beneficial.
Moreover, areas that are not profitable to serve in the
beginning may become profitable with increasing traffic.

C. Constraints on Network Evolution

Several constraints on network extension apply in
practice. We focus on limitations in the number of cells
that can be built in each period and on constraints on
the coverage provided by the network.

1) Limited Construction Activities: The activation of
new sites is assumed to involve construction activities;
antennas have to be mounted, equipped with transmis-
sion units, and connected to the network. The same holds
true if a new cell is to be opened on an existing site;
technicians have to mount and configure the transmission
unit. We assume that the capacity of constructing new
sites and cells is limited. This is a reasonable assumption,
since the deployment of a network involves the construc-
tion of ten-thousands of cells.

2) Coverage Requirements: A minimum coverage is
expected and may be stipulated by license terms from
network service provides in the mobile telecommunica-
tion mass market. In Section II-A.3 we introduced the
cell service area, which is the part of the covered area
from which all traffic can be serviced without exceeding
some load threshold. The area where the cell provides
coverage might be larger. The coverage constraints are
not formulated on basis of the service area but on the
basis of coverage areas. We denote the coverage area
of cell i with AZ(»C). The total coverage area A(©) of a
network configuration is the union of all coverage areas
of cell installed:

U A

Ale) —
4 is installed

Let w: A — R>( be a function weighting the planning
area A, such as some population density. The coverage
requirement is fulfilled if the weight of the total coverage
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Fig. 2. Observed traffic and 20 sample paths of geometric Brownian
motion (gray)

area exceeds the required percentage of the weight of the
planning area. The required percentage is expressed by
the parameter o € [0, 1]. The coverage requirement is

satisfied if
/ w(z) dz > a/ w(z) de.
A A

D. Traffic Per Capita Defines Spatial Service Demand

The spatial service demand can be derived from the
monthly traffic per capita that is expected to be generated
by mobile data services. In Section III, a stochastic
model for the evolution of the demand is developed.

Given a fixed average monthly traffic per capita and a
population map for the planning area, the monthly traffic
volume in each pixel can be computed. Assuming that a
fixed fraction of this traffic volume (25 % is a common
value in the literature) is spent in the busy hour of a
day, the average traffic rate is computed for the pixel
in the busy hour. This traffic rate is interpreted as the
number of “reference users” of some reference service.
These “users” generate the equivalence of the desired
traffic volume. The evalutation of the network and the
computation of cell service areas is then performed based
on these “reference users” per pixel.

ITI. STOCHASTIC MODEL OF TRAFFIC EVOLUTION

We assume future demand to be the main source of
uncertainty. We model the demand in terms of the traffic
volume that is generated by consumers using mobile
services. The large dynamic range in the traffic obser-
vations, depicted in Figure 2, indicates that prediction
errors can lead to poor planning decisions.

The power of stochastic optimization lies in the con-
sideration of different future evolutions of key parame-
ters in the optimization model. In multistage stochastic
optimization, tree structured processes are most suitable
to describe randomness. They have the property that
scenarios share the first part of the random path until
the paths splits. Until the splitting point, these parts are
indistinguishable and only the conditional distribution of
future events is known at that time. Repeatedly splitting
of bundles of scenarios makes the problem multistage.

In the following, a three step approach to compute
scenario trees is described. In the first step, we model
random influences as a stochastic process. Second, the
time horizon is discretized and sample paths from the
stochastic process are drawn. Third, a scenario tree
is constructed. The tree approximates the information
structure (i.e., the increase of information over time)
inherent in the scenarios (and the probabilities) with as
few nodes and scenarios as possible. The scenario tree
is the input for a stochastic program that can be solved
numerically. Figure 3 shows the scheme of the scenario
tree construction.

a) Traffic as Geometric Brownian Motion: The
traffic in the mobile networks has commonly been per-
ceived as exponentially growing in the time horizon
under consideration. The geometric Brownian motion is
appropriate to model exponential growth with random
disturbance and models the uncertain traffic evolution.
The geometric Brownian motion is a stochastic process
X that solves the stochastic differential equation

dXt = th dt + O'Xt th

The process and its properties are described, for example,
by Shreve [13].

b) Sampling Traffic Paths: Paths are sampled from
this distribution. The time horizon is discretized such
that the sample points coincide with the points in time
where decision have to be made. Each path represents
a possible evolution of the demand. Historical data
helps to get a reasonable choice of the parameters of
the geometric Brownian motion. Figure 2 shows the
observed traffic data in the mobile networks in Germany
and Switzerland and 20 sample paths of the geometric
Brownian motion. The sampled paths all have the same
probability, so a large number of samples is needed to
capture the characteristics of the distribution. We refer
to Glasserman [4] for sampling techniques.

c) Scenario Tree Construction: The information
structure described by the sample paths is approxi-
mated by a scenario tree. Scenario trees are constructed
from sample paths using SCENRED, a tool for sce-
nario reduction and scenario tree construction written by
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Fig. 3. Three stage approach for scenario tree construction

Heitsch [6]. SCENRED constructs a scenario tree from
a given set of scenarios by minimizing an appropriate
metric on the space of probability distributions, see
Heitsch and Romisch [7] for details.

For our computational experiments, we constructed
two different scenario trees. Both trees result from a
tree construction on the basis of 300 sample paths of
the geometric Brownian Motion with drift p 1.6
and volatility o = 0.6. Different parameter settings for
SCENRED were used to generate trees with different
numbers of nodes. Due to the large range of the values
of the sample path, we apply SCENRED to the logarithm
of the sample path and transform the resulting tree back.
Figure 4 visualizes the two trees. The colors of the nodes
represent the access probabilities.

IV. OPTIMIZING NETWORK EVOLUTION

The main decision in the network evolution is where
and when to build new cells. We are given a set C of
candidate locations for cells and a scenario tree with
nodes n € N. The decision for the construction of a
cell is represented by a binary construction variable yy;.
The model sets y,; = 1 if cell ¢ is already built in node
n and y,; = 0 otherwise. Activating the cells is only
possible once the coverage requirement is fulfilled.

The planning area A is discretized into two-
dimensional pixel x € A. The service area AS@') in
node n is the subset of the planning area in which all
demand for network traffic is serviced. As described in
Section II-A.3, the shape of the service area depends
on the demand intensity and might differ for different
nodes in the scenario tree. Binary service variables xffw)
indicate whether a pixel is serviced by the network.
These are forced to O if the coverage requirement is not
fulfilled and the constructed cells are not yet active. The
set of potentially servicing cells (built and unbuilt) of a
pixel x in a node n is denoted by

cls) —

nT

{ieC|xeA,(§)}

Analogously, binary coverage variables xffgg are set to 1

if the pixel x is within the coverage area of an active
cell in node n. These variables allow the formulation of
the coverage requirements.

A. Multistage Stochastic Program for Expected Profit

The aim of the optimization procedure is to determine
an optimal network evolution plan, i.e., a plan when
and where to construct cells. All technical and regulatory
requirements described in Section II-C have to modelled.
We formulate a multistage stochastic integer program.
Table I summarizes the variables used in the model.

max Z P(n) { Z Cha :rslsz)

neN z€A
=37 @ (i — Ypit) + 2 yui) | @a)
ieC
s.t. Z Yni > 28 VneN,z€ A (2b)
iecls)
Zymzxicz) VneN,zeAd (20
iec’e)
Yni = Yp(n)i VneN,ieC (2d)
Z (ym‘ - yp(n)i) < K, VnenN (2e)
ieC
Z Wna xﬁfz > (an Z wm> cn VYneN 2f)
zeA zeA
> ah) < |Alen VneN g)
zcA
ye {07 1}./\/><C7 ZC(S> c {O7 1}N><A
29 e {0, 13", ce {0, 1}V (2h)

The objective is to maximize the expected net present
value over an appropriate scenario tree. The net present
value is the sum of all future discounted cash-flows, i.e.,
the discounted revenues and the discounted expenditures.
The expectation is easily calculated for discrete proba-
bility distributions; we sum the discounted cash-flows of
all nodes and weight them by there probability. Within
the brackets the total discounted cash-flow in node n is
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Fig. 4. The scenario trees for annual planning, colors visualize probabilities

computed. The first sum within the brackets computes
the revenues while the second computes the capital and
the operational expenses in the node. Constraints (2b)
and (2c) ensure the correct setting of service and cover-
age variables, respectively. Destruction or deactivation of
cells is not allowed, which is reflected by monotonicity
of the variables y,,; and is ensured by constraint (2d). For
the father of the root node r of the scenario tree, artificial
variables y,,,); = 0 are included. Constraint (2e) ensures
that the construction limit is not violated. The difference
Yni — Yp(n); is 1 if the cell is built in node n. The sum
counts the number of cells built in node n which is
limited by the construction limit K. The constraints (2f)
and (2g) ensure that the coverage requirement is fulfilled
at the moment the network starts operation. If enough
coverage is provided, ¢, = 1 and constraint (2g) is
void. If ¢, = 0, constraint (2f) is always fulfilled and
constraint (2g) forces all service variables 337(1332 to 0. The
domains of the decision variables are specified in (2h).

V. COMPUTATIONAL EXPERIMENTS

In this section, we describe our realistic planning
scenario, present presolving steps to make the result-
ing optimization problem computationally tractable, and
report optimization results with respect to two different
scenario trees. Experiments on another planning scenario
and with different time horizons can be found in [12].

A. Planning Scenario

We study our methods in a realistic planning scenario
comprising the area of the city of Hamburg, Germany,
and surroundings. The dataset is provided by a German

TABLE 1
VARIABLES AND COEFFICIENTS IN OPTIMIZATION MODELS

Name Domain Interpretation

Sets

A CR? Planning area, usually divided into pixel
C Canditate set of cells

A,(fi) cA Service area of cell ¢ in node n

.AEC) cA Coverage area of cell ¢

c) cc Cells that can service pixel z in node n
cld cc Cells that can cover pixel x

Scenario Tree

N Nodes in scenario tree

p(n) €N The father of node n in the scenario tree
P(n) €(0,1]  Probability of node n

Coefficients and Parameters

K, eN Construction limit per timeperiod

Qn € [0,1] Coverage requirement parameter

Wna € Rxo Weights on pixel

Cha € Rxo Disc. revenue generated by pixel x at node n
¢“”) Ry,  Disc. capital expenses for cell i at node n
Eﬁff ) € Rxo Disc. operational expenses for cell 7 at node n

Decision Variables

Yni € {0,1} Cell ¢ is built at node n

) € {0,1} Pixel x is serviced by an active cell at node n
) € {0,1} Pixel z is covered by an active cell at node n
Cn € {0,1} Coverage requirement is met at node n

network operator. Graphical representations of the net-
work can unfortunately not be included into the paper.

The scenario contains data for 1476 cells at 477
sites. Due to the large number of cells, we plan on site
basis, i.e., we decide which sites to build. Table II gives
an overview over the scenario data and the planning
parameters.



TABLE 1I
SCENARIO PROPERTIES AND PLANNING PARAMETERS

Parameter Value
Scenario Properties

Area 4682.34 km?
Pixel Size 50m
Number of Pixel 1872936
Pixel with positive weight 296 538
Population Estimate 1800000

Candidates Locations 477 Sites with 1476 Cells

Planning Parameters
Base-line traffic 50MB p. Cap. p. Mon.
Risk-adjusted interest rate (annual) 20 %
Construction limit 60 and 100
Max. number of technology upgrades 5

Traffic impact reduction per upgrade 50 %

B. The Effect of Presolving

Removing redundant variables and constraints can
speed up the process of solving mixed-integer programs.
In the following, we present fast and exact presolving
methods cause significant reductions in the problem size
and thereby make the problem computationally tractable.
The impact of the different presolving methods is sum-
marized in Table III. The first row gives the problem size
without presolving. In each of the following rows, one
presolving method after the other is added.

1) Removing variables without impact: Service vari-
ables for pixel that do not generate cash-flow have no
impact on the objective function. Fixing these variables
to 0 is always feasible and does not change a solutions
objective function value. This fixing should hence be
done in a presolving step and the variables should not be
included into the model. In this case, the corresponding
service constraints (2b) are redundant and also deleted.
The same applies to coverage variables corresponding
to pixel with weight 0. Especially in sparsely populated
areas, this presolving step can reduce the problem size
significantly. The resulting problem size of the model if
this presolving step is applied is given in the second row
of Table III.

2) Pixel Aggregation: Two pixel that can be serviced
by the same set of servers are either both covered or
both uncovered. The pixel are not distinguishable by
the model and can be aggregated. The aggregation of
pixel results in a different discretization of the planning
area. Since the shapes of the service areas depend on
the traffic, the discretization of the planning area might
be different in each node. Of course, an aggregated
discretization is also used for the baseline traffic for
the coverage requirement. The sizes of the models with
aggregated pixels are given in the third row of Table III.

TABLE 1II
IMPACT OF PRESOLVING ON THE MODEL SIZE FOR THE SCENARIO
TREE WITH 32 NODES

Constraints ~ Variables
Without presolving 127375491 127375900
Only pixel with weight > 0 20180427 20180836
Pixel aggregation 834905 835314
Variable reuse 619944 620353
Fix coverage requirement 430737 430295

3) Reusing Service Variables as Coverage Variables:
Suppose a node n and two pixel x and y, where the cell
of possible servers of x is equal to the set of possibly
covering cells of y:

c) — o)

nT Y

If the coverage requirement is not fulfilled, the service
variables are forced to 0. In this case, setting the cov-
erage variables to O is always feasible. If the coverage
requirement is fulfilled and one cell ¢ € CT(«LSm) is built,
then coverage and service variables can be set to one.
In both cases they take the same value and aggregating
them does neither affect the feasibility of the problem
and nor change the objective function value. We can,
however, eliminate some variables and constraints. In our
experiments, this procedure can be applied to about half
of the coverage variables. This allows a reduction of the
model size of about 25 %. The figures are displayed in
the fourth row of Table III.

4) Presolving the Coverage Requirement: If the cov-
erage requirement cannot be fulfilled, the service and
coverage variables for the respective node can be fixed
to 0 and eliminated from the model. By solving a
small optimization model that maximizes the coverage
attainable in a node, nodes where this is the case can be
identified efficiently. In our planning scenario, however,
the coverage requirement can be fulfilled already in the
root node and no savings are possible.

5) Mandatory Coverage Requirement: If the coverage
requirement is mandatory in some stage, the coverage
requirement variables for the respective stages are fixed
to 1. If the coverage requirement is fulfilled once, it is
fulfilled in all following stages. A monitoring is thus
only needed in the first stage the coverage requirement
is demanded. The respective constraints and coverage
variables can be deleted from the model. The result
is a further reduction of the number of variables and
constraints as displayed in the fifth row of Table III.
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C. Computational Results

We conduct our computational experiments on quad-
core PCs with 16 GB main memory. All MIPs are
generated with ZIMPL [9] and solved with CPLEX
Version 12.2 [8] with a time limit of 10 hours and a
relative gap limit of 0.5 %.

Generally, large differences in the network evolution
across the different scenarios are observed. Consider,
for example, the Hamburg annually planning scenario
optimized on the scenario tree with 34 nodes and a
maximum construction limit of 100. The evolution of
the number of installed sites in each node is visualized
in Figure 5 by the color of the node. At the root node,
40 sites are built to ensure the coverage requirement
(57 % of the population are covered in the root). In the
scenarios with poor traffic evolution, very few further
sites are constructed after that; less than 10 with a
probability of 26 %. In the scenarios with a high traffic
increase, considerably more sites are built; 327 or more
in 2010 with a probability of 22 %.

Negative cash-flows occur only in 3 nodes. The aggre-
gated cash-flow is only negative in the scenario with the
poorest traffic evolution (probability 7 %). In this case,
the initial investment of 4 mill. is never recovered. Dis-
counting changes this situation noticeably. Four scenar-
10s with a total probability of 39 % have a negative final
aggregated discounted cash-flow. In these scenarios, the
investment in an alternative project with the same return
is favorable. Taking all scenarios into account, however,
the project is profitable with an expected discounted
profit of 14410188€. A summary of the optimization
results in the different parameter settings is displayed in
Table IV.

Demanding for coverage in the root node considerably
decreases the performance in terms of expected profit.

TABLE V
COMPARISON OF STOCHASTIC OPTIMIZATION OVER SCENARIO
TREE AND OPTIMIZATION WITH THE EXPECTED TRAFFIC
EVOLUTION AND EVALUATED ON SCENARIO TREE.

Scen. Tree Exp. Traffic Evol.

Expectation Expectation

Hamburg annually with mandatory coverage in root

27 Nodes, 100 Cap  12972933€  11130202€ ( -14.2%)
27 Nodes, 60 Cap 12906 688€  11147457€ ( -13.6 %)
34 Nodes, 100 Cap  14410188€  11681093€ ( -18.9%)
34 Nodes, 60 Cap 13969286€ 11592296 € ( -17.0 %)
Hamburg annually

27 Nodes, 100 Cap  15286450€  13295759€ ( -13.0%)
27 Nodes, 60 Cap 15233750€ 13286692 € ( -12.8 %)
34 Nodes, 100 Cap  16659934€  13843274€ ( -16.9%)
34 Nodes, 60 Cap 16198435€ 13721703 € ( -15.3%)

The figures for the trees differ. The expectation is about
10 % higher for the tree with 34 nodes. The reduction
of the construction limit from 100 to 60 has only a
minor effect in the scenario tree with 27 nodes. In the
setting with the tree with 34 nodes, the expected profit
suffers from the reduced construction limit. The limit is
exhausted only in the scenarios with high increase in the
traffic, which are the most profitable.

1) Comparison to a Clairvoyant: The solution of
our stochastic program is a non-anticipative network
evolution plan for each root-leaf path in the scenario
tree. If the non-anticipativity constraints are relaxed, the
model decomposes into independent subproblems for
the leaves which can be optimized individually. This
corresponds to the perspective of a clairvoyant. The
expected profit of the clairvoyant’s strategy provides an
upper bound for the expected profit of the stochastic
program and is displayed in the third column of Table IV.

The difference between the solution of the stochastic
program and the clairvoyant’s solutions is surprisingly
small. In all settings, the clairvoyant outperformes us
by at most 2.2 %. The absolute difference between the
expectations of the clairvoyant’s strategy and the non-
anticipative strategy is called expected value of perfect
information (EVPI). Since the clairvoyant’s problem is a
relaxation of the stochastic program, the EVPI is always
non-negative. The EVPI in the different settings is stated
in the last column of Table IV. We observe that the EVPI
is considerable higher in the tree with 34 nodes than
in the tree with 27 nodes. However, the EVPI always
represents less than 2.2 % of the expected profit.

2) Deterministic Optimization for the Expected Traffic
Evolution: Traditionally, uncertain data is treated by
optimizing for the expected data evolution. The resulting



TABLE 1V
COMPARISON OF OPTIMIZATION OVER THE SCENARIO TREE AND OVER THE INDIVIDUAL SCENARIOS, I. E., THE RELAXATION OF THE
NON-ANTICIPATIVITY CONSTRAINTS

Opt. over scen. tree

Relax. of non-anticipativity

Expectation Expectation EVPI

Annually

27 Nodes, 100 Cap 15286450€ 15291 819€ ( +0.0 %) 5368€
27 Nodes, 60 Cap 15233750€ 15245549 € ( +0.1 %) 11798 €
34 Nodes, 100 Cap 16659934 € 16895924€ (+1.4%) 235991€
34 Nodes, 60 Cap 16198435€ 16510183€ (+1.9%) 311749€
Annually with mandatory coverage in root

27 Nodes, 100 Cap 12972933 € 13024 427€ ( +0.4 %) 51494 €
27 Nodes, 60 Cap 12906 688 € 12969 340€ ( +0.5 %) 62652€
34 Nodes, 100 Cap 14410188 € 14595176€ (+1.3%)  184988€
34 Nodes, 60 Cap 13969286 € 14279881 € (+22%) 310595€

network evolution can then be evaluated in the different
scenarios of a scenario tree and the expected profit of
that evolution strategy can be calculated. The result of
this experiment is displayed in Table V and compared to
the solution of the stochastic optimization.

A significantly poorer performance is observed. The
expected profit decreases between 13 % and 19 %. This
comparison shows that the stochastic programming ap-
proach yields significantly better results than planning
on the expected demand evolution. In practice, however,
the network operator would probably not stick to the
planning on the basis of the expected traffic evolution,
but would re-optimize regularly to adjust the planning to
the shifted expectation of the future demand evolution.
The procedure in practice would be a rolling horizon
approach and would probably yield better solutions.

VI. CONCLUSIONS

In this paper, we propose, implement, and analyze
the application of multistage stochastic programming in
strategic cellular network planning. Network operators in
the telecommunication industry face strong, hardly pre-
dictable demand evolution. This applies to the types of
the services requested as well as to the demand intensity.
Strategic planning is substantial in this highly uncertain
market environment, since huge financial investments
have to be mastered.

The classical approaches for strategic decision taking,
such as net present value and decision tree analysis, have
considerable shortcomings. The popular real options ap-
proach addresses most of them, but the theoretical barrier
for the proper application is high and the conditions often
not fulfilled.

Recently, stochastic programming has been proposed
as an alternative to real options, which avoids the as-
sumptions from financial mathematics [15]. The steady

advances in MIP technology as well as computer tech-
nology render the routine solution of large-scale mixed-
integer programs possible. These two observations are at
the starting point of our work. The goal is to analyze how
stochastic programming can be used to tackle realistic
strategic network planning problems.

We use a realistic system model of UMTS radio cells,
which takes signal propagation and interferences into
account. We devise an approach for strategic UMTS
radio network planning that maps both, cell coverage
as well as a cell’s capability to serve demand, into
the notion of a cell’s service area. This also allows to
model the increase of cell capacity through technology
upgrades.

The demand evolution is modeled as a continuous
stochastic process, which is approximated by a discrete
scenario tree. We use a three-stage approach for the
construction of non-uniform scenario trees that serve as
input of the stochastic program.

We conduct computational experiments on a realistic
planning scenario. We study eight different planning set-
tings in total. The corresponding deterministic equivalent
problems are solved using a commercial MIP solver to
small optimality gaps within 10 hours running time. Our
aggregation technique allows to substantially reduce the
problem sizes of the corresponding deterministic equiv-
alent programs; on realistic input data a reduction from
about 120000000 to 600000 variables and constraints
is achieved in some instances (see Table III).

The optimization result provides a tree-like network
deployment plan, where construction over time is tuned
to the demand evolution. The evolution paths differ
considerable across the tree. Compared to deterministic
optimization for the expected demand evolution, the ex-
pected profit increases by at most 18.9 % if our approach



10

is applied. In conclusion, the acceptable solution times
as well as the obtained results encourage the application
of stochastic methods in this setting.

Relaxing the non-anticipativity of the network evolu-
tion yield results from a clairvoyant’s perspective. We
observe improvements of at most 2% in the expected
profit. The value of perfect information is hence rather
small in the planning scenarios under consideration.

The framework can be extended to use different risk-
measures, such as some multi-period Average-Value-at-
Risk, instead of the expected profit.

Our approach can be applied to plan the evolution
of other cellular radio network technologies as well.
Planning for LTE requires merely small changes in the
system model and an update of model parameters. The
market model should be updated to match the present
market conditions with a high degree of penetration
(approaching saturation) and flat rate contracts. An appli-
cation to planning optical fiber access networks (FTTX)
may also be feasible, but would require an in-depth
analysis not conducted here.
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