@article{HassenBenAhmed, author = {Hassen, Wiem Fekih and Ben Ahmed, Mariem}, title = {Optimization of a Redox-Flow Battery Simulation Model Based on a Deep Reinforcement Learning Approach}, series = {Batteries}, volume = {10}, journal = {Batteries}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/batteries10010008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-13994}, pages = {20 Seiten}, abstract = {Vanadium redox-flow batteries (VRFBs) have played a significant role in hybrid energy storage systems (HESSs) over the last few decades owing to their unique characteristics and advantages. Hence, the accurate estimation of the VRFB model holds significant importance in large-scale storage applications, as they are indispensable for incorporating the distinctive features of energy storage systems and control algorithms within embedded energy architectures. In this work, we propose a novel approach that combines model-based and data-driven techniques to predict battery state variables, i.e., the state of charge (SoC), voltage, and current. Our proposal leverages enhanced deep reinforcement learning techniques, specifically deep q-learning (DQN), by combining q-learning with neural networks to optimize the VRFB-specific parameters, ensuring a robust fit between the real and simulated data. Our proposed method outperforms the existing approach in voltage prediction. Subsequently, we enhance the proposed approach by incorporating a second deep RL algorithm—dueling DQN—which is an improvement of DQN, resulting in a 10\% improvement in the results, especially in terms of voltage prediction. The proposed approach results in an accurate VFRB model that can be generalized to several types of redox-flow batteries.}, language = {en} } @article{HassenImenAzzouz, author = {Hassen, Wiem Fekih and Imen Azzouz, Imen Azzouz}, title = {Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach}, series = {Energies}, volume = {16}, journal = {Energies}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en16248102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-13985}, pages = {18 Seiten}, abstract = {The worldwide adoption of Electric Vehicles (EVs) has embraced promising advancements toward a sustainable transportation system. However, the effective charging scheduling of EVs is not a trivial task due to the increase in the load demand in the Charging Stations (CSs) and the fluctuation of electricity prices. Moreover, other issues that raise concern among EV drivers are the long waiting time and the inability to charge the battery to the desired State of Charge (SOC). In order to alleviate the range of anxiety of users, we perform a Deep Reinforcement Learning (DRL) approach that provides the optimal charging time slots for EV based on the Photovoltaic power prices, the current EV SOC, the charging connector type, and the history of load demand profiles collected in different locations. Our implemented approach maximizes the EV profit while giving a margin of liberty to the EV drivers to select the preferred CS and the best charging time (i.e., morning, afternoon, evening, or night). The results analysis proves the effectiveness of the DRL model in minimizing the charging costs of the EV up to 60\%, providing a full charging experience to the EV with a lower waiting time of less than or equal to 30 min.}, language = {en} } @article{ErdoganFekihHassen, author = {Erdogan, G{\"u}lsah and Fekih Hassen, Wiem}, title = {Charging scheduling of hybrid energy storage systems for EV charging stations}, series = {Energies}, volume = {2023}, journal = {Energies}, number = {16}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en16186656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-14128}, pages = {29 Seiten}, abstract = {The growing demand for electric vehicles (EV) in the last decade and the most recent European Commission regulation to only allow EV on the road from 2035 involved the necessity to design a cost-effective and sustainable EV charging station (CS). A crucial challenge for charging stations arises from matching fluctuating power supplies and meeting peak load demand. The overall objective of this paper is to optimize the charging scheduling of a hybrid energy storage system (HESS) for EV charging stations while maximizing PV power usage and reducing grid energy costs. This goal is achieved by forecasting the PV power and the load demand using different deep learning (DL) algorithms such as the recurrent neural network (RNN) and long short-term memory (LSTM). Then, the predicted data are adopted to design a scheduling algorithm that determines the optimal charging time slots for the HESS. The findings demonstrate the efficiency of the proposed approach, showcasing a root-mean-square error (RMSE) of 5.78\% for real-time PV power forecasting and 9.70\% for real-time load demand forecasting. Moreover, the proposed scheduling algorithm reduces the total grid energy cost by 12.13\%.}, language = {en} }