Direct Methanation of Flue Gas at a Lignite Power Plant

  • The combustion of fossil fuels results in CO2 emission, which is one of the primary causes of global warming. An important approach for solving this problem is the fixation, the chemical utilization and the recycling of CO2. Therefore, we investigate the catalytic conversion of CO2 with H2 into methane (CH4) with an upscaled test station at a brown coal power plant. In a completely new strategy, we realize the direct conversion of the CO2 content of the flue gas, without a cleaning process like amine scrubbing or optimized combustion like oxyfuel. Our experiments are performed in matters of catalytic performance, heat production and stability of the catalytic Sabatier process, as a function of the gas flow rate. The catalytic performance is investigated with a simulated composition of flue gas and under real conditions directly at the power plant. The CH4 production by the Sabatier process is realized with a maximum input flow rate of near 50Nm3/h, with 30Nm3/h flue gas and 20Nm3/h hydrogen. For these values, the necessary power scaleThe combustion of fossil fuels results in CO2 emission, which is one of the primary causes of global warming. An important approach for solving this problem is the fixation, the chemical utilization and the recycling of CO2. Therefore, we investigate the catalytic conversion of CO2 with H2 into methane (CH4) with an upscaled test station at a brown coal power plant. In a completely new strategy, we realize the direct conversion of the CO2 content of the flue gas, without a cleaning process like amine scrubbing or optimized combustion like oxyfuel. Our experiments are performed in matters of catalytic performance, heat production and stability of the catalytic Sabatier process, as a function of the gas flow rate. The catalytic performance is investigated with a simulated composition of flue gas and under real conditions directly at the power plant. The CH4 production by the Sabatier process is realized with a maximum input flow rate of near 50Nm3/h, with 30Nm3/h flue gas and 20Nm3/h hydrogen. For these values, the necessary power scale for hydrogen generation by electrolysis is around 100kW. With synthetic and real flue gas, a conversion up to 99% (for hydrogen surplus) with 100% selectivity is stabilized. The reaction operates in thermal steady state equilibrium without any external energy supply. In consequence, the process of CO2 recycling could be integrated directly as a post combustion process of conventional power plants, without an expensive capturing step, for example.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Klaus Müller, Fabian RachowORCiD, Johannes Israel, Evgenia CharlaftiORCiD, Carola Schwiertz, Dieter SchmeißerORCiD
URL:http://www.iaras.org/iaras/home/caijes/direct-methanation-of-flue-gas-at-a-lignite-power-plant
ISSN:2367-8941
Title of the source (English):International Journal of Environmental Science
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:CO2 recycling; Flue Gas; Power to Gas (PtG); Sabatier-Reaction; Synthetic Natural Gas (SNG)
Issue number:2
First Page:425
Last Page:437
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.