The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

  • Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220) direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220) reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained usingTi-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220) direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220) reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa) and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Ivan A. Shulepov, Egor B. Kashkarov, Igor B. Stepanov, Maxim S. Syrtanov, Alina Sutygina, Ivan Shanenkov, Aleksei ObrosovORCiD, Sabine WeißORCiDGND
URL:http://www.mdpi.com/2075-4701/7/11/497/htm
DOI:https://doi.org/10.3390/met7110497
ISSN:2075-4701
Title of the source (English):Metals
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:TiAlN; deposition; filtered vacuum arc; hardness; phase composition; separate cathodes; wear-resistance
Volume/Year:7
Issue number:11
Number of pages:13
Article number:ID 497
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.