Identification of the Tensile Force in Tie-rods of Historical Constructions

  • This paper addresses the problem of the bending curvature due to self-weight of tie-rods when using dynamical approach to identify the tensile force in tie-rods of historical constructions. Although several dynamic testing methods have been proposed in the literature, the effect of bending curvature due to self-weight of the rods on their frequency values has not been studied. In this work, the bending curvature due to self-weight of tie-rods with small cross-section-to-length ratios is proven to have significant effect on their frequency values of the first vibration mode at low tensile stresses. As a result, the accuracy of the identified tensile force in tie-rods will be affected if the effect is not accurately considered. Four tie-rod specimens of different characteristics were tested in laboratory by dynamic tests. A numerical model was developed for axially loaded tie-rod using a FE program, assuming Euler beam with uniform cross-section and rotational springs at both supports. By calibrating the experimental and numericalThis paper addresses the problem of the bending curvature due to self-weight of tie-rods when using dynamical approach to identify the tensile force in tie-rods of historical constructions. Although several dynamic testing methods have been proposed in the literature, the effect of bending curvature due to self-weight of the rods on their frequency values has not been studied. In this work, the bending curvature due to self-weight of tie-rods with small cross-section-to-length ratios is proven to have significant effect on their frequency values of the first vibration mode at low tensile stresses. As a result, the accuracy of the identified tensile force in tie-rods will be affected if the effect is not accurately considered. Four tie-rod specimens of different characteristics were tested in laboratory by dynamic tests. A numerical model was developed for axially loaded tie-rod using a FE program, assuming Euler beam with uniform cross-section and rotational springs at both supports. By calibrating the experimental and numerical results, the most suitable dynamical analysis for tie-rod models to take into account the effect of bending curvature due to their self-weights is concluded. In particular, the analysis should be performed in two steps: (i) first, the static geometric non-linear analysis to obtain the deflected shape of the tie-rod due to its self-weight and an applied tensile force; (ii) then, the modal analysis is run on the deflected tie-rod to achieve the frequencies and mode shapes via free vibration at that applied tensile force. When the effect of bending curvature due to self-weight of tie-rods is neglected, the frequency of the first mode should be excluded. Based on these conclusions, two techniques to identify in-situ the tensile stress in tie-rods are discussed. They are frequency-based identification techniques that minimize the measurement errors. In addition, a methodology to estimate a range of tensile stress using a formula or two selfconstructed standard charts is proposed.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Thi Mai Hoa Luong, Luís F. Ramos, Rafael Aguilar
DOI:https://doi.org/10.1007/978-1-4419-9316-8_6
ISBN:978-1-4419-9316-8
ISBN:978-1-4419-9315-1
Title of the source (English):Civil Engineering Topics, Volume 4, Proceedings of the 29th IMAC, A Conference on Structural Dynamics, 2011
Publisher:Springer
Place of publication:New York, NY
Editor: Tom Proulx
Document Type:Conference Proceeding
Language:English
Year of publication:2011
Tag:Axial force; Finite element model updating; Historical constructions; Tie-rod
First Page:71
Last Page:81
Series ; volume number:Conference Proceedings of the Society for Experimental Mechanics Series ; 7
Faculty/Chair:Fakultät 6 Architektur, Bauingenieurwesen und Stadtplanung / FG Bautechnikgeschichte
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.