A numerical study on the influence of mìcrotopography on raìnfall-runoff-infiltration partitioning

  • Microtopographic features, although minute relative to the hillslope scales, are not insignificant in terms of runoff generation, rain-runoff-infiltration partitioning and overall hillslope hydrological signals. As-sessing the effects of such small scale features, arguably requires mathematical models that can cope with microtopraphic complexity to adequately represent surface water dynamics, which in turn deter-mine hydrological signals at the hillslope scale. In this work, rain-runoff simulations are perfomed with a 2D shallow water model on a rectangular domain representing a hillslope with an idealized 2D sinusoidal microtopography. Several combinations of slope, wavelength and amplitudes were used to create over 500 surfaces on which simulations were performed in order to assess their hydrological response in terms of rainfallrunoff-infiltration partitioning. The results were analysed through several dimensionless indices which allow to observe the dependency of characteristic hydrological responses to mi-crotopographyMicrotopographic features, although minute relative to the hillslope scales, are not insignificant in terms of runoff generation, rain-runoff-infiltration partitioning and overall hillslope hydrological signals. As-sessing the effects of such small scale features, arguably requires mathematical models that can cope with microtopraphic complexity to adequately represent surface water dynamics, which in turn deter-mine hydrological signals at the hillslope scale. In this work, rain-runoff simulations are perfomed with a 2D shallow water model on a rectangular domain representing a hillslope with an idealized 2D sinusoidal microtopography. Several combinations of slope, wavelength and amplitudes were used to create over 500 surfaces on which simulations were performed in order to assess their hydrological response in terms of rainfallrunoff-infiltration partitioning. The results were analysed through several dimensionless indices which allow to observe the dependency of characteristic hydrological responses to mi-crotopography properties. They reveal a complex dependency of hydrological signatures to surface microtopography. In particular, the results show that the fraction of rainfall that results in infiltration is increased following a particular non-linear dependency on surface smoothness. Additionally, hydrograph properties and surface flow connectivity also show emerging patterns in response to microtopography.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Daniel Caviedes-VoullièmeORCiD, Andrea Domin, Javier Fernández-Pato, Christoph HinzORCiD
URL:https://www.researchgate.net/publication/318226057_A_numerical_study_on_the_influence_of_microtopography_on_rainfall-runoff-infiltration_partitioning
Title of the source (English):4th International Symposium of Shallow Flows (ISSF 2017), Eindhoven University of Technology, The Netherlands, 26.-28.06.2017
Document Type:Conference Proceeding
Language:English
Year of publication:2017
Tag:infiltration; microtopography; onset of runoff; rainfall-runoff; shallow flows
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Hydrologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.