Carbon cycling of biological soil crusts mirrors ecological maturity along a Central European inland dune catena

  • Photosynthesis and respiration of biological soil crusts (BSCs) sampled along a mobile inland dune catena were determined to evaluate the applicability of Odum’s P/R ratio, determined under controlled conditions, for estimation of ecosystem maturity. The theory is that in the early stages of ecological succession, the total photosynthesis (P) exceeds the rate of community respiration (R), so that the P/R ratio is greater than 1, and that P/R approaches 1 as succession occurs. In the special case of organic pollution, the P/R ratio is typically less than 1. Samples were collected in the deflation zone of the dune near the crest (BSC1, thickness 2-3 mm), at the lee side of grass tussocks at the slope (BSC2, thickness 2-4 mm) and near the base (BSC3, thickness 4-6 mm). Non crusted sand was used as control (BSC0). Photosynthesis, respiration, crust biomass, as well as fossil and allochthonous pedogenic carbon entering the system with mineral substrate were determined. The respiration of the BSC1 was dominated by the degradation ofPhotosynthesis and respiration of biological soil crusts (BSCs) sampled along a mobile inland dune catena were determined to evaluate the applicability of Odum’s P/R ratio, determined under controlled conditions, for estimation of ecosystem maturity. The theory is that in the early stages of ecological succession, the total photosynthesis (P) exceeds the rate of community respiration (R), so that the P/R ratio is greater than 1, and that P/R approaches 1 as succession occurs. In the special case of organic pollution, the P/R ratio is typically less than 1. Samples were collected in the deflation zone of the dune near the crest (BSC1, thickness 2-3 mm), at the lee side of grass tussocks at the slope (BSC2, thickness 2-4 mm) and near the base (BSC3, thickness 4-6 mm). Non crusted sand was used as control (BSC0). Photosynthesis, respiration, crust biomass, as well as fossil and allochthonous pedogenic carbon entering the system with mineral substrate were determined. The respiration of the BSC1 was dominated by the degradation of allochthonous organic matter, leading to a diminished P/R ratio. The better developed BSC2 and BSC3 were less influenced by allochthonous organic matter, where BSC maturity increased downslope with biomass increase. No significant relation between the P/R ratio and soil water tension was found. Crust carbon pools increased and flows intensified, but mineralization constants decreased with system maturation. It was concluded that Odum’s P/R ratio and accumulation of recalcitrant to biodegradation organic matter are indicative for biocrust maturity.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Thomas FischerORCiD, Maik VesteORCiD
DOI:https://doi.org/10.1016/j.catena.2017.09.004
ISSN:0341-8162
Title of the source (English):Catena
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2018
Volume/Year:160
First Page:68
Last Page:75
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Zentrale Einrichtungen / Zentrale Analytik der BTU Cottbus-Senftenberg (ZA-BTU) / Zentrales Analytisches Labor
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.