Twelve years of monitoring the ecological development of a constructed catchment

  • Landscapes and ecosystems are complex systems with many feedback mechanisms acting between the various abiotic and biotic components. The knowledge about these interacting processes is mainly derived from mature ecosystems. The initial development of ecosystem complexity may involve state transitions following catastrophic shifts, disturbances or transgression of thresholds. The Chicken Creek catchment was constructed in 2005 to study ecosystem development of an initial ecosystem at the landscape scale. The world´s largest constructed catchment has a hillslope-shaped 6 ha size with defined boundary conditions and well-documented inner structures1. For 12 years, we have been monitoring the development of different system compartments2,3. The fast formation of patterns and increasing heterogeneity were challenges for the monitoring program. Starting with a regular 20 × 20 m grid in the initially homogeneous system, monitoring installations were continuously complemented by more pattern and patch oriented measurements in order to catchLandscapes and ecosystems are complex systems with many feedback mechanisms acting between the various abiotic and biotic components. The knowledge about these interacting processes is mainly derived from mature ecosystems. The initial development of ecosystem complexity may involve state transitions following catastrophic shifts, disturbances or transgression of thresholds. The Chicken Creek catchment was constructed in 2005 to study ecosystem development of an initial ecosystem at the landscape scale. The world´s largest constructed catchment has a hillslope-shaped 6 ha size with defined boundary conditions and well-documented inner structures1. For 12 years, we have been monitoring the development of different system compartments2,3. The fast formation of patterns and increasing heterogeneity were challenges for the monitoring program. Starting with a regular 20 × 20 m grid in the initially homogeneous system, monitoring installations were continuously complemented by more pattern and patch oriented measurements in order to catch up with both the spatial and temporal dynamics of the catchment. The monitoring program includes both high-resolution temporal recordings (e.g., groundwater levels, discharge, meteorological data, soil moisture), spatial sampling campaigns (e.g., soil properties) and annual vegetation surveys. In addition, we use drone images to document the site development. The presentation describes the monitoring approach and adaptation with examples from vegetation, soil and hydrological data at different spatial and temporal scales. From the monitoring data we were able to derive different phases during initial development that are characterized by abiotic/biotic feedback mechanisms controlling catchment functioning. Detailed monitoring of the Chicken Creek catchment with known boundary conditions and structure information could help in disentangling general feedback mechanisms between hydrologic, pedogenic, biological and geomorphological processes as well as in gaining a more integrative view of succession and its drivers during the transition from initial, less complex systems to more mature ecosystems. Long-term time series of data are the key for a better understanding of these processes and the effects on ecosystem self-organization and resilience.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Wolfgang SchaafORCiDGND, Werner GerwinORCiD, Annika Badorreck
URL:http://www.biogeomon.cz/documents/Abstracts.pdf
Title of the source (English):9th International Symposium on Ecosystem Behavior BIOGEOMON, Litomysl, Czech Republic, August 20-24, 2017
Publisher:Czech Geological Survey
Place of publication:Prague
Editor: Martin Novák, Pavel Krám, Markéta Stepánová
Document Type:Conference Proceeding
Language:English
Year of publication:2017
First Page:42
Last Page:43
Faculty/Chair:Zentrale Einrichtungen / Forschungszentrum Landschaftsentwicklung und Bergbaulandschaften (FZLB)
Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.