Trend analysis for integrated regional climate change impact assessments in the Lusatian river catchments (north-eastern Germany)

  • Trend analysis on observations and model-based climate change simulations are two commonly used methods for climate change detection and impact analysis. Here we propose an integrated assessment and interpretation of climate change impacts as a prerequisite for stakeholder outreach and planning of suitable climate change adaptation measures. The assessment includes (i) identifying trends in mete-orological and hydrological observations and their nature, (ii) analysing the relation between the mete-orological drivers and generated run-off as an integrated catchment response and (iii) analysing how hitherto changes agree with the simulations by regional climate models (RCMs). The Lusatian river catchments of Spree and Schwarze Elster, characterised by high anthropogenic impact (e.g. mining activities) and low natural water yield, serve as study areas. The results of this study suggest that in-creases in observed temperature and potential evapotranspiration are robust while observed precipitation remained nearly unchanged (1963–2006).Trend analysis on observations and model-based climate change simulations are two commonly used methods for climate change detection and impact analysis. Here we propose an integrated assessment and interpretation of climate change impacts as a prerequisite for stakeholder outreach and planning of suitable climate change adaptation measures. The assessment includes (i) identifying trends in mete-orological and hydrological observations and their nature, (ii) analysing the relation between the mete-orological drivers and generated run-off as an integrated catchment response and (iii) analysing how hitherto changes agree with the simulations by regional climate models (RCMs). The Lusatian river catchments of Spree and Schwarze Elster, characterised by high anthropogenic impact (e.g. mining activities) and low natural water yield, serve as study areas. The results of this study suggest that in-creases in observed temperature and potential evapotranspiration are robust while observed precipitation remained nearly unchanged (1963–2006). The RCMs agree on simulating a temperature increase but simulate opposing trends for precipitation for both past (1963–2006) and future (2018–2060) periods, the latter inducing differences in the hydrological response (actual evapotranspiration and run-off). For stakeholder outreach, we communicated a range of potential future climates and identified the statistical RCMs (STAR, WettReg) as warm and dry scenarios, and the dynamical RCMs (REMO, CCLM) as wet scenarios. Ultimately, the combined analysis of trends in observations and simulation models can be beneficial for stakeholder outreach and may increase their willingness to plan and implement suitable climate change adaptation strategies which are urgently needed within the Lusatian river catchments.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Anne Gädeke, Ina Pohle, Hagen Koch, Uwe Grünewald
DOI:https://doi.org/10.1007/s10113-017-1138-0
ISSN:1436-3798
ISSN:1436-378X
Title of the source (English):Regional Environmental Change
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:Change points; Global dimming; Regional climate models; Stakeholder outreach; Trends analysis; Water management
Volume/Year:17
Issue number:6
First Page:1751
Last Page:1762
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Hydrologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.