Vibration-based Model Updating and Identification of Multiple Axial Forces in Truss Structures

  • Safety assessment of existing iron and steel truss structures requires the determination of the axial forces and corresponding stresses in truss structural members. The results of the axial force determination can be integrated as part of a structural health monitoring scheme for existing trusses. In this work, a methodology is proposed to identify multiple axial forces in members of a truss structure based on the modal parameters. Vibration test allows the identification of the natural frequencies and mode shapes, globally of the truss structure as well as locally of the individual bars. The method calibrates the numerical model of the truss structure using a genetic algorithm and strategic validation criteria. The validation criteria are based on the identified natural frequencies and global mode shapes of the truss structure as well as information of the axial forces in the individual bars of the truss, which are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the single barsSafety assessment of existing iron and steel truss structures requires the determination of the axial forces and corresponding stresses in truss structural members. The results of the axial force determination can be integrated as part of a structural health monitoring scheme for existing trusses. In this work, a methodology is proposed to identify multiple axial forces in members of a truss structure based on the modal parameters. Vibration test allows the identification of the natural frequencies and mode shapes, globally of the truss structure as well as locally of the individual bars. The method calibrates the numerical model of the truss structure using a genetic algorithm and strategic validation criteria. The validation criteria are based on the identified natural frequencies and global mode shapes of the truss structure as well as information of the axial forces in the individual bars of the truss, which are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the single bars based on an analytical-based algorithm. The calibration allows the identification of the axial forces in all bars of the truss structure. For mode pairing strategy, a technique makes use of the enhanced modal assurance criteria with the calculation of the modal strain energies. Moreover, the modal strain energies are also used to select the relevant local mode shape of the individual bars. The feasibility and accuracy of the proposed methodology is verified by laboratory experiments on several truss structures. In situ tests on existing trusses are intended. The results from one of the laboratory tested structures, i.e. a two-bar system, are included in this paper.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Thi Mai Hoa Luong, Volkmar Zabel, Werner LorenzGND, Rolf G. Rohrmann
DOI:https://doi.org/10.1016/j.proeng.2017.04.499
ISSN:1877-7058
Title of the source (English):Procedia Engineering
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:Truss structures; axial force; dynamic test; model updating; optimization technique
Volume/Year:188
First Page:385
Last Page:392
Faculty/Chair:Fakultät 6 Architektur, Bauingenieurwesen und Stadtplanung / FG Bautechnikgeschichte
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.