Coupling of the regional climate model COSMO-CLM using OASIS3-MCT with regional ocean, land surface or global atmosphere model: description and performance

  • We present the prototype of a regional climate system model based on the COSMO-CLM regional climate model coupled with several model components, analyze the performance of the couplings and present a strategy to find an optimum configuration with respect to computational costs and time to solution. The OASIS3-MCT coupler is used to couple COSMO-CLM with two land surface models (CLM and VEG3D), a regional ocean model for the Mediterranean Sea (NEMO-MED12), two ocean models for the North and Baltic Sea (NEMO-NORDIC and TRIMNP+CICE) and the atmospheric component of an earth system model (MPI-ESM). We present a unified OASIS3-MCT interface which handles all couplings in a similar way, minimizes the model source code modifications and describes the physics and numerics of the couplings. Furthermore, we discuss solutions for specific regional coupling problems like handling of different domains, multiple usage of MCT interpolation library and efficient exchange of 3D fields. A series of real-case simulations over Europe has beenWe present the prototype of a regional climate system model based on the COSMO-CLM regional climate model coupled with several model components, analyze the performance of the couplings and present a strategy to find an optimum configuration with respect to computational costs and time to solution. The OASIS3-MCT coupler is used to couple COSMO-CLM with two land surface models (CLM and VEG3D), a regional ocean model for the Mediterranean Sea (NEMO-MED12), two ocean models for the North and Baltic Sea (NEMO-NORDIC and TRIMNP+CICE) and the atmospheric component of an earth system model (MPI-ESM). We present a unified OASIS3-MCT interface which handles all couplings in a similar way, minimizes the model source code modifications and describes the physics and numerics of the couplings. Furthermore, we discuss solutions for specific regional coupling problems like handling of different domains, multiple usage of MCT interpolation library and efficient exchange of 3D fields. A series of real-case simulations over Europe has been conducted and the computational performance of the couplings has been analyzed. The usage of the LUCIA tool of the OASIS3-MCT coupler enabled separation of the direct costs of: coupling, load imbalance and additional computations. The resulting limits for time to solution and costs are shown and the potential of further improvement of the computational efficiency is summarized for each coupling. It was found that the OASIS3-MCT coupler keeps the direct coupling costs of communication and horizontal interpolation small in comparison with the costs of the additional computations and load imbalance for all investigated couplings. For the first time this could be demonstrated for an exchange of approximately 450 2D fields per time step necessary for the atmosphere-atmosphere coupling between COSMO-CLM and MPI-ESM. A procedure for finding an optimum configuration for each of the couplings was developed considering the time to solution and costs of the simulations. The optimum configurations are presented for sequential and concurrent coupling layouts. The procedure applied can be regarded as independent on the specific coupling layout and coupling details.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Stefan Weiher, Naveed Akhtar, Jennifer Brauch, Marcus Breil, Edouard Davin, Ha T. M. Ho-Hagemann, Eric Maisonnave, Markus Thürkow, Andreas Will
DOI:https://doi.org/10.5194/gmd-2016-47
ISSN:1991-9603
Title of the source (English):Geoscientific Model Development
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2016
Contributing Corporation:Goethe-Universität Frankfurt am Main, DWD Offenbach (Main), KIT Karlsruhe, ETH Zürich, HZG Geesthacht, CERFACS Toulouse, Freie Universität Berlin
Tag:COSMO-CLM; Climate; Computational Efficiency; Coupling; OASIS; Parallelisation; Performance; Regional Climate Model; Regional Climate System Model
Volume/Year:47
First Page:1
Last Page:61
Comment:
Discussion Paper
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Atmosphärische Prozesse
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.