Virtual sensor array consisting of a single sensor element with variable affinity: an application for analysis of fish freshness

  • Recently reported concept of electrical control of sensor affinity was applied for formation of a virtual sensor array based on the single sensing element. Affinity properties of this element were modulated by electrically controlled conversion of chemosensitive material between its different redox states possessing different affinity. The sensor was realized on the basis of electrochemical chemotransistor in which a low temperature ionic liquid containing chloride was used to connect the chemosensitive material to the Ag/AgCl reference electrode. The concept of virtual array was proved by its application for monitoring of fish headspace. Using three characteristics of the sensor response measured at three different redox states of the same sensor material, we have obtained signals from a virtual sensor array consisting of nine chemosensitive elements. The sensor displays systematic changes of its nine signals during fish degradation and allows us to make quantitative analysis of its freshness defined as the after the catch. The levelRecently reported concept of electrical control of sensor affinity was applied for formation of a virtual sensor array based on the single sensing element. Affinity properties of this element were modulated by electrically controlled conversion of chemosensitive material between its different redox states possessing different affinity. The sensor was realized on the basis of electrochemical chemotransistor in which a low temperature ionic liquid containing chloride was used to connect the chemosensitive material to the Ag/AgCl reference electrode. The concept of virtual array was proved by its application for monitoring of fish headspace. Using three characteristics of the sensor response measured at three different redox states of the same sensor material, we have obtained signals from a virtual sensor array consisting of nine chemosensitive elements. The sensor displays systematic changes of its nine signals during fish degradation and allows us to make quantitative analysis of its freshness defined as the after the catch. The level of detection is far below the level of organoleptic detection.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Yulia EfremenkoORCiD, Vladimir M. MirskyORCiDGND
DOI:https://doi.org/10.1016/j.snb.2016.10.126
ISSN:0925-4005
Title of the source (English):Sensors and Actuators B: Chemical
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:Affinity; Chemical sensor; Chemotransistor; Conducting polymer; Conductometric sensor; Fish freshness; Sensor arrays
Volume/Year:241
First Page:652
Last Page:657
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Nanobiotechnologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.