A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosterone

  • Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates including less activated hydrocarbons by transferring peroxide-borne oxygen. Herein, we investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule of testosterone by a novel unspecific peroxygenase that was produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass of 36 kDa and specific activities of 4.4 to 12 U mg-1. Whereas well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with up to 7,000 total turnovers (TTN) into two oxygenated products: the 4,5-epoxide of testosterone in β-configuration and 16α-hydroxytestosterone.Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates including less activated hydrocarbons by transferring peroxide-borne oxygen. Herein, we investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule of testosterone by a novel unspecific peroxygenase that was produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass of 36 kDa and specific activities of 4.4 to 12 U mg-1. Whereas well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with up to 7,000 total turnovers (TTN) into two oxygenated products: the 4,5-epoxide of testosterone in β-configuration and 16α-hydroxytestosterone. The reaction was performed at 100-mg scale resulting in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, which both could be isolated with purities above 96 %. Thus, CglUPO may be a promising biocatalyst for the oxyfunctionalization of bulky steroids and provide a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Jan Kiebist, Kai-Uwe Schmidtke, Jörg Zimmermann, Harald Kellner, Nico JehmlichORCiD, René UllrichORCiD, Daniel Zänder, Martin HofrichterORCiD, Katrin Scheibner
URL:http://onlinelibrary.wiley.com/doi/10.1002/cbic.201600677/abstract
DOI:https://doi.org/10.1002/cbic.201600677
ISSN:1439-7633
Title of the source (English):ChemBioChem
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:hydroxylation; peroxidase
Volume/Year:18
Issue number:6
First Page:563
Last Page:569
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Enzymtechnologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.