Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting

  • A systematic structural elucidation of the near-surface active species of the two remarkably active nickel phosphides Ni12P5 and Ni2P on the basis of extensive analytical, microscopic, and spectroscopic investigations is reported. The latter can serve as complementary efficient electrocatalysts in the hydrogen (HER) versus oxygen evolution reaction (OER) in alkaline media. In the OER Ni12P5 shows enhanced performance over Ni2P due to the higher concentration of nickel in this phase, which enables the formation of an amorphous NiOOH/Ni(OH)2 shell on a modified multiphase with a disordered phosphide/phosphite core. The situation is completely reversed in the HER, where Ni2P displayed a significant improvement in electrocatalytic activity over Ni12P5 owing to a larger concentration of phosphide/phosphate species in the shell. Moreover, the efficiently combined use of the two nickel phosphide phases deposited on nickel foam in overall electrocatalytic water splitting is demonstrated by a strikingly low cell voltage and high stabilityA systematic structural elucidation of the near-surface active species of the two remarkably active nickel phosphides Ni12P5 and Ni2P on the basis of extensive analytical, microscopic, and spectroscopic investigations is reported. The latter can serve as complementary efficient electrocatalysts in the hydrogen (HER) versus oxygen evolution reaction (OER) in alkaline media. In the OER Ni12P5 shows enhanced performance over Ni2P due to the higher concentration of nickel in this phase, which enables the formation of an amorphous NiOOH/Ni(OH)2 shell on a modified multiphase with a disordered phosphide/phosphite core. The situation is completely reversed in the HER, where Ni2P displayed a significant improvement in electrocatalytic activity over Ni12P5 owing to a larger concentration of phosphide/phosphate species in the shell. Moreover, the efficiently combined use of the two nickel phosphide phases deposited on nickel foam in overall electrocatalytic water splitting is demonstrated by a strikingly low cell voltage and high stability with pronounced current density, and these catalysts could be an apt choice for applications in commercial alkaline water electrolysis.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Prashanth W. Menezes, Arindam Indra, Chittaranjan DasORCiD, Carsten Walter, Caren Göbel, Vitaly Gutkin, Dieter SchmeißerORCiD, Matthias Driess
DOI:https://doi.org/10.1021/acscatal.6b02666
ISSN:2155-5435
Title of the source (English):ACS Catalysis
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:electrocatalysis; nickel phosphide; overall water splitting; structural rearrangement; surface structure
Volume/Year:7
Issue number:1
First Page:103
Last Page:109
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.