Implicit Time Integration Schemes for the FEM Simulation of Fast Rotating Structures

  • Due to the demand of more and more detailed FEM simulation results of whole aero-engine models, the number of DOF of such models (Fig. 1) increases dramatically. Although the available computational power for the solution of such highly nonlinear, dynamic boundary value problems also increased during the last years, the overall computational time of these high-fidelity models for the simulation of a few milliseconds of the running engine is in the order of several weeks even on high performance clusters with thousands of CPU cores. Typically, for such highly dynamic FEM computations explicit time integration schemes are used in order to solve the equations of motion. To keep such a numerical integration stable, the time step size may not exceed a certain critical time step size. Unfortunately, the critical time step size of an explicit time integration algorithm for the engine models under consideration is in the order of 10-8. This means that the simulation of a running engine over a time span of a few seconds results in aDue to the demand of more and more detailed FEM simulation results of whole aero-engine models, the number of DOF of such models (Fig. 1) increases dramatically. Although the available computational power for the solution of such highly nonlinear, dynamic boundary value problems also increased during the last years, the overall computational time of these high-fidelity models for the simulation of a few milliseconds of the running engine is in the order of several weeks even on high performance clusters with thousands of CPU cores. Typically, for such highly dynamic FEM computations explicit time integration schemes are used in order to solve the equations of motion. To keep such a numerical integration stable, the time step size may not exceed a certain critical time step size. Unfortunately, the critical time step size of an explicit time integration algorithm for the engine models under consideration is in the order of 10-8. This means that the simulation of a running engine over a time span of a few seconds results in a computational time of several years with clusters, which are available nowadays. Therefore, implicit time integration schemes, which are unconditionally stable and allow much bigger time steps, have to be used. Since in an implicit integration, in contrast to an explicit one, an equilibrium iteration is always necessary, the computational costs for an implicit time step are much higher than for an explicit time step. Almost all commercial FE codes use the classical Newmark implicit time integration scheme. It will be shown that this algorithm fails especially for the simulation of fast rotating structures if bigger time steps are used. This is demonstrated at the example of academic examples as well as for more realistic rotor models. To overcome the problems of the Newmark integration, a 3-Point-Newmark- Euler-Backward integration scheme [1,2] has been selected, which consists of alternating Newmark and 3-Point-Euler-Backward steps. The additional interpolation information for the Euler-step is provided by the previous Newmark step. This integration procedure has been implemented and successfully applied to the FEM simulation of fast rotating structures, which will be also demonstrated during the presentation.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Markus Kober, Arnold Kühhorn, Akin Keskin
URL:http://wccm2016.org/data/WCCM_Proceeding_v2.1.pdf
URL:http://wccm2016.org/wp/pdf/150917.pdf
Title of the source (English):WCCM XII & APCOM VI (World Congress on Computational Mechanics & Asia Pacific Congress on Computational Mechanics), Seoul, South Korea, 23.-29. Juli 2016
Document Type:Conference Proceeding
Language:English
Year of publication:2016
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Strukturmechanik und Fahrzeugschwingungen
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.