Polythiophene films on gold electrodes: A comparison of bulk and contact resistances in aqueous and organic media

  • Recently, developed technique for separated analysis of bulk and contact resistance was applied for the investigation of polythiophene films electropolymerized in boron trifluoride diethylether. Kinetics of polymer resistance and for the first time of the contact resistance during polymer oxidation and reduction were characterized. Influence of electrochemically controlled oxidation state on the polymer bulk and the polymer/metal contact resistance was measured in aqueous and organic environment. Variation of the electrical potential from −0.2 to 1.1 V vs. Ag/AgCl (sat) leads to an increase of the polymer conductivity for about three orders of magnitude and to a decrease of the contact resistance for about three orders of magnitude. The potential dependence of the two resistances was different, especially at high anodic potentials. In organic solution, the change of both resistances was more than six orders of magnitude. The results were compared with electrochemical and spectroelectrochemical data, a difference in the materialRecently, developed technique for separated analysis of bulk and contact resistance was applied for the investigation of polythiophene films electropolymerized in boron trifluoride diethylether. Kinetics of polymer resistance and for the first time of the contact resistance during polymer oxidation and reduction were characterized. Influence of electrochemically controlled oxidation state on the polymer bulk and the polymer/metal contact resistance was measured in aqueous and organic environment. Variation of the electrical potential from −0.2 to 1.1 V vs. Ag/AgCl (sat) leads to an increase of the polymer conductivity for about three orders of magnitude and to a decrease of the contact resistance for about three orders of magnitude. The potential dependence of the two resistances was different, especially at high anodic potentials. In organic solution, the change of both resistances was more than six orders of magnitude. The results were compared with electrochemical and spectroelectrochemical data, a difference in the material behavior depending on the electrolyte solvent was observed. The influence of electrical potential on polymer resistance in aqueous solution was explained quantitatively by a three-state model with the values of oxidation potential +0.3 and +1.2 V.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Ulrich Lange, Vladimir M. MirskyORCiDGND
DOI:https://doi.org/10.1007/s10008-011-1450-4
ISSN:1433-0768
Title of the source (English):Journal of Solid State Electrochemistry
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2011
Tag:Conducting polymers; In situ conductivity measurement; Polythiophene; Spectroelectrochemistry; s24-Technique
Volume/Year:15
Issue number:11
First Page:2377
Last Page:2382
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Nanobiotechnologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.