Molecular Resonances in the Photoionization Cross Section (PIX) of Oxidic Semiconductors

  • Despite their fascinating physical applications in sensoric there is no clear view of the electronic structure of these class of oxidic semiconductor materials. We studied the photo ionization cross sections (PIX) in a CIS like experiment of the valence states as well as the defect state and compare these to the CFS data obtained from X-ray absorption spectroscopy. While the first technique contains only transitions from a defined initial state the latter covers all the possible optical channels. We show for WO3-films that a structural reorganization of the surface is induced by doping (Na exposure) which increases the O2p/W5d orbital mixing. Pristine TiO2 (110) single crystals show basically the same behavior but have an initially stronger hybridization of Ti3d derived states with the O2p valence states. Upon doping the defect intensity is increased as well as the orbital hybridization. Our data give evidence that valence band derived states have almost the same orbital parentage like the defect state. They offer that the waveDespite their fascinating physical applications in sensoric there is no clear view of the electronic structure of these class of oxidic semiconductor materials. We studied the photo ionization cross sections (PIX) in a CIS like experiment of the valence states as well as the defect state and compare these to the CFS data obtained from X-ray absorption spectroscopy. While the first technique contains only transitions from a defined initial state the latter covers all the possible optical channels. We show for WO3-films that a structural reorganization of the surface is induced by doping (Na exposure) which increases the O2p/W5d orbital mixing. Pristine TiO2 (110) single crystals show basically the same behavior but have an initially stronger hybridization of Ti3d derived states with the O2p valence states. Upon doping the defect intensity is increased as well as the orbital hybridization. Our data give evidence that valence band derived states have almost the same orbital parentage like the defect state. They offer that the wave functions of these states are localized on a molecular scale. This is in contrast to the common treatment of resonances in the PIX which are usually discussed in terms of the resonant photoemission model, which does not include the possibility of mixed valence/defect states.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Thomas Heller, Oliver Böhme, Dieter SchmeißerORCiD
URL:http://www.dpg-verhandlungen.de/year/2000/conference/regensburg/part/o/session/15/contribution/3?lang=en
Title of the source (German):Verhandlungen der Deutschen Physikalischen Gesellschaft
Publisher:Deutsche Physikalische Gesellschaft
Place of publication:Bad Honnef
Document Type:Conference Proceeding
Language:English
Year of publication:2000
Tag:Photoionization Cross Section (PIX); X-Ray absorption spectroscopy; X-Ray photoelectron spectroscopy; defect states
Series ; volume number:Verhandlungen der Deutschen Physikalischen Gesellschaft ; Reihe 6, Band 35
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.