An efficient Si photo cathode for a wide range of electrolyte pH values

  • Hydrogen fuel cells, being environmental friendly to produce energy, are a technology of future. One of the efficient ways to produce hydrogen is solar driven photocatalysis using semiconducting materials as photo electrodes. The choice of electrodes is a crucial factor and is done on the basis of photo corrosion stability, light absorption efficiency, and photocarrier lifetime. P-type Si can be used as photo cathode to produce H2 by direct photocatalysis. Si cathodes can be used in acidic electrolytes to have efficient photo catalytic activity but they are unstable in alkaline electrolytes. Therefore, to use both Si electrodes in the same electrolyte, their chemical stability should be extended over a wide range of pH. To this purpose we modified the surface of a p-type Si photocathode with very thin films of TiO2 grown by atomic layer deposition (ALD). We found that the modified Si cathode shows an increased photoresponse and a lower onset potential with respect to the pristine surface and an increased stability at various pHHydrogen fuel cells, being environmental friendly to produce energy, are a technology of future. One of the efficient ways to produce hydrogen is solar driven photocatalysis using semiconducting materials as photo electrodes. The choice of electrodes is a crucial factor and is done on the basis of photo corrosion stability, light absorption efficiency, and photocarrier lifetime. P-type Si can be used as photo cathode to produce H2 by direct photocatalysis. Si cathodes can be used in acidic electrolytes to have efficient photo catalytic activity but they are unstable in alkaline electrolytes. Therefore, to use both Si electrodes in the same electrolyte, their chemical stability should be extended over a wide range of pH. To this purpose we modified the surface of a p-type Si photocathode with very thin films of TiO2 grown by atomic layer deposition (ALD). We found that the modified Si cathode shows an increased photoresponse and a lower onset potential with respect to the pristine surface and an increased stability at various pH values.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Chittaranjan DasORCiD, Massimo TallaridaORCiD, Katarzyna Skorupska, Hans-Joachim Lewerenz, Dieter SchmeißerORCiD
URL:http://www.dpg-verhandlungen.de/year/2013/conference/regensburg/part/ds/session/4/contribution/3?lang=de
Title of the source (German):Verhandlungen der Deutschen Physikalischen Gesellschaft
Publisher:Deutsche Physikalische Gesellschaft
Place of publication:Bad Honnef
Document Type:Conference Proceeding
Language:English
Year of publication:2013
Tag:Si photoelectrode; TiO2; atomic layer deposition (ALD); water splitting
Series ; volume number:Verhandlungen der Deutschen Physikalischen Gesellschaft ; Reihe 6, Band 48
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.