Pseudogap and (An)isotropic Scattering in the Fluctuating Charge-Density Wave Phase of Cuprates

  • We present a general scenario for high-temperature superconducting cuprates, based on the presence of dynamical charge density waves (CDWs) and to the occurrence of a CDW quantum critical point, which occurs, e.g., at doping p ≈ 0.16 in YBa2Cu3O6 + δ (YBCO). In this framework, the pseudogap temperature T∗ is interpreted in terms of a reduction of the density of states due to incipient CDW and, at lower temperature to the possible formation of incoherent superconducting pairs. The dynamically fluctuating character of CDW accounts for the different temperatures at which the CDW onset revealed by X-ray scattering (Tons(p)), and the static three-dimensional CDW ordering appear. We also investigate the anisotropic character of the CDW-mediated scattering. We find that this is strongly anisotropic only close to the CDW quantum critical point (QCP) at low temperature and very low energy. It rapidly becomes nearly isotropic and marginal-Fermi-liquid-like away from the CDW QCP and at finite (even rather small) energies. This may reconcile theWe present a general scenario for high-temperature superconducting cuprates, based on the presence of dynamical charge density waves (CDWs) and to the occurrence of a CDW quantum critical point, which occurs, e.g., at doping p ≈ 0.16 in YBa2Cu3O6 + δ (YBCO). In this framework, the pseudogap temperature T∗ is interpreted in terms of a reduction of the density of states due to incipient CDW and, at lower temperature to the possible formation of incoherent superconducting pairs. The dynamically fluctuating character of CDW accounts for the different temperatures at which the CDW onset revealed by X-ray scattering (Tons(p)), and the static three-dimensional CDW ordering appear. We also investigate the anisotropic character of the CDW-mediated scattering. We find that this is strongly anisotropic only close to the CDW quantum critical point (QCP) at low temperature and very low energy. It rapidly becomes nearly isotropic and marginal-Fermi-liquid-like away from the CDW QCP and at finite (even rather small) energies. This may reconcile the interpretation of Hall measurements in terms of anisotropic CDW scattering with recent photoemission experiments Bok, J.M., et al. Sci. Adv. 2, e1501329 (2016).show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Sergio CapraraORCiD, Marco GrilliORCiD, Carlo Di Castro, Götz Seibold
URL:http://link.springer.com/article/10.1007/s10948-016-3775-9
DOI:https://doi.org/10.1007/s10948-016-3775-9
ISSN:1557-1939
ISSN:1557-1947
Title of the source (English):Journal of Superconductivity and Novel Magnetism
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:Anisotropic scattering; Charge-density waves; High-Tc superconducting cuprates
Volume/Year:30
Issue number:1
First Page:25
Last Page:30
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Computational Physics
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.