Nonlinear dynamics of thin liqiud films consisting of two miscible components

  • Recently, we systematically derived a system of two coupled conservation equations governing a thin liquid layer with a deformable surface composed of two completely miscible components [Phys. Fluids 22, 104102 (2010)]. One equation describes the location of the free surface and the second one the evolution of the mean concentration. This lubrication model was investigated previously in linearized form. The study is now extended to the fully nonlinear case of thin liquid films of a binary mixture (in one and two horizontal spatial dimensions) with and without heat transport. For an initially flat and motionless film heated from below, we analyze the component separation induced by the Soret effect. Nonlinear simulations show that the Soret effect can cause a multitude of interesting behaviors, such as oscillatory patterns and solitonlike structures (localized traveling drops or holes). A stronger component separation induced by stronger Soret effects favors faster-moving localized structures. For isothermal systems, we study theRecently, we systematically derived a system of two coupled conservation equations governing a thin liquid layer with a deformable surface composed of two completely miscible components [Phys. Fluids 22, 104102 (2010)]. One equation describes the location of the free surface and the second one the evolution of the mean concentration. This lubrication model was investigated previously in linearized form. The study is now extended to the fully nonlinear case of thin liquid films of a binary mixture (in one and two horizontal spatial dimensions) with and without heat transport. For an initially flat and motionless film heated from below, we analyze the component separation induced by the Soret effect. Nonlinear simulations show that the Soret effect can cause a multitude of interesting behaviors, such as oscillatory patterns and solitonlike structures (localized traveling drops or holes). A stronger component separation induced by stronger Soret effects favors faster-moving localized structures. For isothermal systems, we study the fusion and the mixing of two thin liquid films of different but perfectly miscible liquids. Marangoni-driven forces can cause delayed coalescence, ripple formation, and fingering patterns at the borderline between the two liquid layers. A systematic analysis for ripple pattern formation and finger instabilities at different diffusion constants shows that these phenomena appear more pronounced for lower diffusion in the system.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Rodica Borcia, Ion-Dan Borcia, Michael BestehornGND
URL:http://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.056319
DOI:https://doi.org/10.1103/PhysRevE.86.056319
ISSN:2470-0053
Title of the source (English):Physical Review E
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2012
Volume/Year:86
Issue number:5
First Page:056319
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Statistische Physik und Nichtlineare Dynamik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.