Laterally Extended Thin Liquid Films with inertia Under External Vibrations

  • We consider thin liquid films on a horizontal, solid, and completely wetting substrate. The substrate is subjected to oscillatory accelerations in the normal direction and/or in the horizontal direction. A linear Floquet analysis shows that the planar film surface loses stability if amplitudes and frequencies of the harmonic oscillations meet certain criteria. Based on the long wave lubrication approximation, we present an integral boundary layer model where the z component is integrated out and the spatial dimension is reduced by one. The linear stability analysis of this model shows good agreement with the exact problem and with the linearized long wave equations. Pattern formation in the nonlinear regime is computed numerically from the long wave model in two and three spatial dimensions. Normal oscillations show the traditional Faraday patterns such as squares and hexagons. Lateral oscillations cause a pattern formation scenario similar to spinodal dewetting, namely coarsening and no rupture. For certain amplitude and frequencyWe consider thin liquid films on a horizontal, solid, and completely wetting substrate. The substrate is subjected to oscillatory accelerations in the normal direction and/or in the horizontal direction. A linear Floquet analysis shows that the planar film surface loses stability if amplitudes and frequencies of the harmonic oscillations meet certain criteria. Based on the long wave lubrication approximation, we present an integral boundary layer model where the z component is integrated out and the spatial dimension is reduced by one. The linear stability analysis of this model shows good agreement with the exact problem and with the linearized long wave equations. Pattern formation in the nonlinear regime is computed numerically from the long wave model in two and three spatial dimensions. Normal oscillations show the traditional Faraday patterns such as squares and hexagons. Lateral oscillations cause a pattern formation scenario similar to spinodal dewetting, namely coarsening and no rupture. For certain amplitude and frequency ranges, combined lateral and normal oscillations can give rise to one or more traveling drops. Finally, we discuss the control of a drop's motion in the horizontal plane.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Michael BestehornGND
URL:http://scitation.aip.org/content/aip/journal/pof2/25/11/10.1063/1.4830255
DOI:https://doi.org/10.1063/1.4830255
ISSN:1089-7666
Title of the source (English):Physics of Fluids
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2013
Tag:Boundary value problems; Coarsening; Lubrication; Pattern formation; Van der Waals forces
Volume/Year:25
Issue number:11
First Page:114106
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Statistische Physik und Nichtlineare Dynamik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.