Robust Automotive Suspension Design Using Adaptive Response Surface Based Multi-objektive Optimization

  • Deterministic optimization is used in all fields of engineering, especially in early design processes based on digital prototypes and simulation. A major disadvantage of deterministic optimization is the unknown robustness of the found solution against uncertainties of system parameters. Therefore, the Robust Design Optimization (RDO) concept as combination of Robustness Analysis (RA) and deterministic optimization was developed. In this paper, such an approach is applied to the optimization of a suspension for passenger cars w.r.t. typical driving maneuvers. The suspension behavior has to be robust against uncertainties without defining strict limits or safety margins. The coupled multi-objective RDO procedure will find a Pareto-front w.r.t. mean value and variance of chosen objectives. As a result, a specific compromise regarding system robustness and mean performance may be chosen from this Pareto-set. To overcome the vast amount of CPU-time, required for expensive direct function evaluations, an adaptive response surface methodDeterministic optimization is used in all fields of engineering, especially in early design processes based on digital prototypes and simulation. A major disadvantage of deterministic optimization is the unknown robustness of the found solution against uncertainties of system parameters. Therefore, the Robust Design Optimization (RDO) concept as combination of Robustness Analysis (RA) and deterministic optimization was developed. In this paper, such an approach is applied to the optimization of a suspension for passenger cars w.r.t. typical driving maneuvers. The suspension behavior has to be robust against uncertainties without defining strict limits or safety margins. The coupled multi-objective RDO procedure will find a Pareto-front w.r.t. mean value and variance of chosen objectives. As a result, a specific compromise regarding system robustness and mean performance may be chosen from this Pareto-set. To overcome the vast amount of CPU-time, required for expensive direct function evaluations, an adaptive response surface method (aRSM) is integrated. The overall process then consists of an inner loop involving a multi-objective evolutionary algorithm based on response surfaces and an outer loop, where metamodeling is performed on a set of support points. This set is initialized in the first iteration step and updated afterwards by picking promising designs from the Pareto-fronts of the surrogate model, which are then evaluated exactly.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Paul Tobe Ubben, Dieter BestleGND, Jürgen Haug
URL:http://www.dynardo.de/bibliothek/industriefelder/fahrzeugbau.html
Title of the source (English):11. Weimarer Optimierungs- und Stochastiktage – 06. - 07. November 2014
Publisher:DYNARDO GmbH
Place of publication:Weimar
Document Type:Conference Proceeding
Language:English
Year of publication:2015
Tag:multi-objective optimization; robust design
Number of pages:19
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Technische Mechanik und Fahrzeugdynamik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.