Quantification of cold cracking parameters of high strength steels by physical simulation under welding conditions

  • Cold cracks in welds are the result of the formation of brittle microstructure as martensite in the presence of diffusible hydrogen as well as of tensile stresses. Cold cracks occur when the combination of cold crack influence parameters (CCIP) overcomes a critical limit. In this study, critical combinations of CCIP were identified with an enhanced test procedure under welding conditions. The test is based on the physical simulation technique of heat affected zone (HAZ) and it is carried out using the test and simulation center Gleeble 3500. Thereby, laboratory special specimens are charged with hydrogen from pure hydrogen atmosphere in the initial stage of the test. Rigidly restraint specimen section is subjected to different weld temperature cycles. Through the thermal exposure, the desired microstructure of HAZ is set in the test zone of the restraint specimen section. A plastic deformation takes place owing to the prevented expansion during heating and contraction of the specimen during cooling. Consequently, compressive orCold cracks in welds are the result of the formation of brittle microstructure as martensite in the presence of diffusible hydrogen as well as of tensile stresses. Cold cracks occur when the combination of cold crack influence parameters (CCIP) overcomes a critical limit. In this study, critical combinations of CCIP were identified with an enhanced test procedure under welding conditions. The test is based on the physical simulation technique of heat affected zone (HAZ) and it is carried out using the test and simulation center Gleeble 3500. Thereby, laboratory special specimens are charged with hydrogen from pure hydrogen atmosphere in the initial stage of the test. Rigidly restraint specimen section is subjected to different weld temperature cycles. Through the thermal exposure, the desired microstructure of HAZ is set in the test zone of the restraint specimen section. A plastic deformation takes place owing to the prevented expansion during heating and contraction of the specimen during cooling. Consequently, compressive or tensile reactions stresses arise in the deformed zone. Cracked specimen represents a critical combination of the CCIP. The quantitative cold crack criterion separates the cold crack susceptible combinations from those non susceptible.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Ossama Dreibati, Ralf OssenbrinkORCiD, Vesselin MichailovORCiDGND
DOI:https://doi.org/10.2207/qjjws.31.148s
ISSN:0288-4771
Title of the source (English):Quarterly journal of the Japan Welding Society
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2013
Tag:Cold Cracking; High Strength Steel; Physical Simulation
Volume/Year:31
Issue number:4
First Page:148
Last Page:152
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Füge- und Schweißtechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.