Optimisation of micro-processes for shear-assisted solid-liquid separation in a rotatory batch flow vortex reactor

  • This paper reports the study of micro-processes in a novel pre-treatment technique using a pellet forming batch flow vortex reactor of cylindrical shape that consists of axially revolving rotor plates between fixed stator plates. The suspension was first mixed with high molecular weight synthetic polymers by stirring for approximately 50 seconds and then agitated for 20 minutes. The process was optimised for a number of operating conditions including polymer type and dosing regimen, rotation speed, wall-plate gap distance, residence time and suspension filling method. The results of the investigation show that optimising a number of process variables that influence floc formation and growth, along with specific apparatus construction and geometry, help to maintain the suspension in a metastable state that is crucial for the formation of pellet-like compact agglomerates with better dewaterability and uniform aggregate size. A maximum dry solids content of 28.3% after gravity dewatering through a 0.5 mm sieve was recorded during theThis paper reports the study of micro-processes in a novel pre-treatment technique using a pellet forming batch flow vortex reactor of cylindrical shape that consists of axially revolving rotor plates between fixed stator plates. The suspension was first mixed with high molecular weight synthetic polymers by stirring for approximately 50 seconds and then agitated for 20 minutes. The process was optimised for a number of operating conditions including polymer type and dosing regimen, rotation speed, wall-plate gap distance, residence time and suspension filling method. The results of the investigation show that optimising a number of process variables that influence floc formation and growth, along with specific apparatus construction and geometry, help to maintain the suspension in a metastable state that is crucial for the formation of pellet-like compact agglomerates with better dewaterability and uniform aggregate size. A maximum dry solids content of 28.3% after gravity dewatering through a 0.5 mm sieve was recorded during the investigation, with a maximum particle removal efficiency of 97.5%.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Benjamin Oyegbile, Peter Ay, Satyanarayana Narra
URL:http://www.iwaponline.com/jwrd/up/jwrd2015057.htm
DOI:https://doi.org/10.2166/wrd.2015.057
Title of the source (English):Journal of Water Reuse and Desalination
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2015
Tag:floc stability, hydrodynamics, pelleting flocculation, sludge, turbulence
Volume/Year:6
Issue number:1
First Page:125
Last Page:136
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Aufbereitungstechnik und Sekundärrohstofftechnologie (ehemals)
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.