Investigation of the wear resistance properties of Cr/CrN multilayer coatings against sand erosion

  • The wear of metallic components used in gas and steam turbines due to erosive sand particles lead to a tremendous decrease in their lifetime. This wear can be reduced by the use of suitable erosion resistant coatings resulting in lower maintenance costs. In this context, multilayer Cr/CrN PVD coatings using an industrial coater was designed and applied on Inconel 718, a material which finds its application in gas turbines. A variation in the bimodal period has been induced in order to achieve an optimal coating architecture providing optimum properties needed for the erosion resistant coatings. The coating was deposited using a single Cr- target with an induction of N2 during the nitriding phase at a temperature of 480-500 °C and the coating thickness of 24-26 µm was kept constant throughout. The erosion tests were conducted at angles of 30°, 60° and 90°. The sand used for the test is an irregular shaped SiO2. The erosion tests were followed by a detailed microscopic examination of the eroded coating structure in combination withThe wear of metallic components used in gas and steam turbines due to erosive sand particles lead to a tremendous decrease in their lifetime. This wear can be reduced by the use of suitable erosion resistant coatings resulting in lower maintenance costs. In this context, multilayer Cr/CrN PVD coatings using an industrial coater was designed and applied on Inconel 718, a material which finds its application in gas turbines. A variation in the bimodal period has been induced in order to achieve an optimal coating architecture providing optimum properties needed for the erosion resistant coatings. The coating was deposited using a single Cr- target with an induction of N2 during the nitriding phase at a temperature of 480-500 °C and the coating thickness of 24-26 µm was kept constant throughout. The erosion tests were conducted at angles of 30°, 60° and 90°. The sand used for the test is an irregular shaped SiO2. The erosion tests were followed by a detailed microscopic examination of the eroded coating structure in combination with nanoindentation and scratch tests.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Muhammad Naveed, Aleksei ObrosovORCiD, Sabine WeißORCiDGND
DOI:https://doi.org/10.1155/2015/873543
Title of the source (English):Conference Papers in Science
Document Type:Scientific journal article not peer-reviewed
Language:English
Year of publication:2015
Tag:Cr/CrN multilayer, Erosion, PVD, Coatings
Volume/Year:2015
First Page:1
Last Page:10
Comment:
Article ID 873543
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Institution name at the time of publication:Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen (eBTU) / LS Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.