Tribological Investigations of PVD Coated Multi-Layer Constructions

  • Multi-layer constructions become more and more relevant in lightweight applications due to their high strength to weight ratio. They offer excellent crash, damping and recycling properties. Also, the morphology of thermoplastic carbon fibre reinforced plastics (CFRP) render them interesting for large scale manufacturing processes. Nevertheless, a major disadvantage results in a poor resistance against wear and tear, e.g. erosion, which is attributed to weak hardness properties. Hence, this work deals with tribological investigations on orthotropic carbon fibre reinforced polymers (PA 6) either with protective ceramic coating or without. The chosen coating system is a well-known protective covering of metal components, e.g. metal cutting tools, produced by physical vapor deposition (PVD). To characterize the coating system on thermoplastic CFRP, standard analyzing methods are utilized, like optical and scanning electron microscopy (SEM). The tribological investigations are conducted by the tribological ball on disk method toMulti-layer constructions become more and more relevant in lightweight applications due to their high strength to weight ratio. They offer excellent crash, damping and recycling properties. Also, the morphology of thermoplastic carbon fibre reinforced plastics (CFRP) render them interesting for large scale manufacturing processes. Nevertheless, a major disadvantage results in a poor resistance against wear and tear, e.g. erosion, which is attributed to weak hardness properties. Hence, this work deals with tribological investigations on orthotropic carbon fibre reinforced polymers (PA 6) either with protective ceramic coating or without. The chosen coating system is a well-known protective covering of metal components, e.g. metal cutting tools, produced by physical vapor deposition (PVD). To characterize the coating system on thermoplastic CFRP, standard analyzing methods are utilized, like optical and scanning electron microscopy (SEM). The tribological investigations are conducted by the tribological ball on disk method to generate wear tracks on the sample surfaces and hence to calculate the wear rates. These results are compared to literature findings with respect to a certain protective coating system (TiN) and a second nano-structured gel coating system, where both systems are deposited on a thermosetting material, i.e. carbon fibre reinforced epoxy resin, respectively. For this purpose the feasibility of depositing a protective ceramic layer on thermoplastic CFRP is demonstrated. First results on suitable surface pre-treatments have shown a significant influence on the coating quality. The improved performance regarding the wear behavior with respect to tribology compared to the poor substrate and existing technologies is shown additionally.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Marcus Schulze, Holger SeidlitzORCiD, Franziska König, Sabine WeißORCiDGND
DOI:https://doi.org/10.5539/jmsr.v5n1p97
ISSN:1927-0585
Title of the source (English):Journal of Materials Science Research
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2016
Tag:physical vapour deposition; protective coating systems; thermoplastic composites; tribology; wear
Volume/Year:5
Issue number:1
First Page:97
Last Page:106
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Polymerbasierter Leichtbau
Institution name at the time of publication:Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen (eBTU) / LS Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.