Short-term effects of plant litter addition on mineral surface characteristics of young sandy soils

  • Initial stages of soil development are characterized by structural changes of mineral surfaces over time. The specific surface area (SSA) is closely related to pedogenic properties and soil organic matter (SOM). Interactions between SOM and mineral surfaces induce quantitative and qualitative changes in SSA and corresponding soil properties. However, the knowledge about ranges, effects and mechanisms of organic coverage in the very initial phase of pedogenesis is very limited. Therefore, our objective was to study these processes in young sandy soils and the effects of plant litter addition. Soil samples taken from the constructed catchment “Chicken Creek” were used in a microcosm experiment over 80 weeks. The silt and clay fractions of samples (b63 μm) were analyzed before the experiment and after 40 and 80 weeks. The effects of litter addition and weathering on SSA were assessed using the BET-N2 sorption approach. We found increases of SSA between 16.4% and 41.6% within the 80 week experimental period, but a relative reduction in S.Initial stages of soil development are characterized by structural changes of mineral surfaces over time. The specific surface area (SSA) is closely related to pedogenic properties and soil organic matter (SOM). Interactions between SOM and mineral surfaces induce quantitative and qualitative changes in SSA and corresponding soil properties. However, the knowledge about ranges, effects and mechanisms of organic coverage in the very initial phase of pedogenesis is very limited. Therefore, our objective was to study these processes in young sandy soils and the effects of plant litter addition. Soil samples taken from the constructed catchment “Chicken Creek” were used in a microcosm experiment over 80 weeks. The silt and clay fractions of samples (b63 μm) were analyzed before the experiment and after 40 and 80 weeks. The effects of litter addition and weathering on SSA were assessed using the BET-N2 sorption approach. We found increases of SSA between 16.4% and 41.6% within the 80 week experimental period, but a relative reduction in S. A due to organic coverage of these new surfaces after plant litter addition. The removal of the soil organic matter (SOM) by muffling increased SSA (6.8–12.9%). The results for SSA corresponded to changes in surface specific parameters like cation exchange capacity (CEC), surface enthalpy and the fractional coverage of mineral surfaces by SOM. In conclusion, the results showed that the soilswere clearly in a very initial state of soil development. However, the potential of these young sandy soils to adsorb nutrients and soil organic matter as one of the main important soil functions clearly increased within the relatively short experimental period and changes in SSA indicate relatively large increases in mineral surfaces within short time periods during the initial phase of soil development compared to long-term pedogenesis.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Marcus Herbrich, Claudia Zönnchen, Wolfgang SchaafORCiDGND
DOI:https://doi.org/10.1016/j.geoderma.2014.10.017
ISSN:0016-7061
Title of the source (English):Geoderma
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2015
Volume/Year:239-240
First Page:206
Last Page:212
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.