Analysis of uncertainties in the hydrological response of a model-based climate change impact assessment in a subcatchment of the Spree River, Germany

  • Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario global circulation model downscaling approach (DA) bias correction impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerabil-ity of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV-light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potentialClimate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario global circulation model downscaling approach (DA) bias correction impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerabil-ity of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV-light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long-term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Anne Gädeke, Herwig Hölzel, Hagen Koch, Ina Pohle, Uwe Grünewald
URL:http://onlinelibrary.wiley.com/doi/10.1002/hyp.9933/abstract
DOI:https://doi.org/10.1002/hyp.9933
ISSN:1099-1085
Title of the source (English):Hydrological Processes
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2014
Tag:HBV-light; WaSiM-ETH; climate change impact assessment; hydrological modelling; regional climate models; uncertainty
Volume/Year:28
Issue number:12
First Page:3978
Last Page:3998
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Hydrologie
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Hydrologie und Wasserressourcenbewirtschaftung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.