Preparation of human drug metabolites using fungal peroxygenases

  • The synthesis of hydroxylated and O- or N-dealkylated human drug metabolites (HDMs) via selective monooxygenation remains a challenging task for synthetic organic chemists. Here we report that aromatic peroxygenases (APOs; EC 1.11.2.1) secreted by the agaric fungi Agrocybe aegerita and Coprinellus radians catalyzed the H₂O₂-dependent selective monooxygenation of diverse drugs, including acetanilide, dextrorphan, ibuprofen, naproxen, phenacetin, sildenafil and tolbutamide. Reactions included the hydroxylation of aromatic rings and aliphatic side chains, as well as O- and N-dealkylations and exhibited different regioselectivities depending on the particular APO used. At best, desired HDMs were obtained in yields greater than 80% and with isomeric purities up to 99%. Oxidations of tolbutamide, acetanilide and carbamazepine in the presence of H₂¹⁸O₂ resulted in almost complete incorporation of ¹⁸O into the corresponding products, thus establishing that these reactions are peroxygenations. The deethylation of phenacetin-d₁ showed anThe synthesis of hydroxylated and O- or N-dealkylated human drug metabolites (HDMs) via selective monooxygenation remains a challenging task for synthetic organic chemists. Here we report that aromatic peroxygenases (APOs; EC 1.11.2.1) secreted by the agaric fungi Agrocybe aegerita and Coprinellus radians catalyzed the H₂O₂-dependent selective monooxygenation of diverse drugs, including acetanilide, dextrorphan, ibuprofen, naproxen, phenacetin, sildenafil and tolbutamide. Reactions included the hydroxylation of aromatic rings and aliphatic side chains, as well as O- and N-dealkylations and exhibited different regioselectivities depending on the particular APO used. At best, desired HDMs were obtained in yields greater than 80% and with isomeric purities up to 99%. Oxidations of tolbutamide, acetanilide and carbamazepine in the presence of H₂¹⁸O₂ resulted in almost complete incorporation of ¹⁸O into the corresponding products, thus establishing that these reactions are peroxygenations. The deethylation of phenacetin-d₁ showed an observed intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 3.1±0.2, which is consistent with the existence of a cytochrome P450-like intermediate in the reaction cycle of APOs. Our results indicate that fungal peroxygenases may be useful biocatalytic tools to prepare pharmacologically relevant drug metabolites.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Marzena Poraj-Kobielska, Matthias Kinne, René UllrichORCiD, Katrin Scheibner, Gernot Kayser, Kenneth E. Hammel, Martin HofrichterORCiD
URL:http://www.sciencedirect.com/science/article/pii/S0006295211004035
DOI:https://doi.org/10.1016/j.bcp.2011.06.020
ISSN:1873-2968
Title of the source (English):Biochemical Pharmacology
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2011
Tag:Cytochrome P450; Hydroxylation; N-Dealkylation; O-Dealkylation; Peroxidase; Peroxygenation
Volume/Year:82
Issue number:7
First Page:789
Last Page:796
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Enzymtechnologie
Institution name at the time of publication:Fakultät für Naturwissenschaften (eHL) / Prof. Enzymtechnologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.