Soil respiration in alley-cropping system composed of black locust and poplar trees, Germany

  • Understanding of soil carbon dynamics after establishment of alley-cropping systems is crucial for mitigation of greenhouse gas CO2. This study investigates soil CO2 flux in an alley-cropping system composed of black locust (Robinia pseudoacacia L.) and poplar (Max 1) tree strips and adjacent to them crop strips (Lupinus/ Solarigol). Soil CO2 flux was measured monthly over the March – November 2012 period, using a LI-COR LI-8100A automated device. Simultaneously with CO2 flux measurements, soil and air temperature, soil moisture, microbial C and hot water-extractable carbon (HWC) were determined for soils collected nearby each measurement collar. Root biomass was measured to a depth of 15 cm. In all sampling areas, soil CO2 flux increased from May to July, showing a significant positive correlation with air and soil temperature, which can be a reflection of increase in photosynthetic activity over the warm summer months. The relationships between soil moisture and CO2 flux showed positive correlation only for the warm period (May -Understanding of soil carbon dynamics after establishment of alley-cropping systems is crucial for mitigation of greenhouse gas CO2. This study investigates soil CO2 flux in an alley-cropping system composed of black locust (Robinia pseudoacacia L.) and poplar (Max 1) tree strips and adjacent to them crop strips (Lupinus/ Solarigol). Soil CO2 flux was measured monthly over the March – November 2012 period, using a LI-COR LI-8100A automated device. Simultaneously with CO2 flux measurements, soil and air temperature, soil moisture, microbial C and hot water-extractable carbon (HWC) were determined for soils collected nearby each measurement collar. Root biomass was measured to a depth of 15 cm. In all sampling areas, soil CO2 flux increased from May to July, showing a significant positive correlation with air and soil temperature, which can be a reflection of increase in photosynthetic activity over the warm summer months. The relationships between soil moisture and CO2 flux showed positive correlation only for the warm period (May - October), indicating enhancing role of soil moisture on microbial mineralization and root respiration. CO2 flux values varied between sampling areas at different vegetation periods, with significantly higher values in trees over the summer. This could be attributed to the higher photosynthetic activity and higher root density in trees coppices compared to crops. In autumn, after seeding catch crop mix Solarigol, CO2 flux was significantly higher in crops compared to trees, which could be related to soil tillage prior to seeding of crops, as well as to the higher photosynthetic activity of newly seeded crops at the period of rapid plant growth. Despite a seasonal variation in CO2 flux between sampling areas, aaverage CO2 flux values observed over March – November period did not differ significantly between sampling areas, showing 2.5, 3.2, and 2.9 μmol m-2 s-1 values for black locust, poplar and crops, respectively. A greater C loss with soil respiration under trees in summer period may be compensated by greater C assimilation and storage in woody biomass, and the greater respiration from crop strips after tillage in autumn.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Tanya V. Medinski, Dirk FreeseORCiD, Christian Böhm
URL:http://www.repository.utl.pt/handle/10400.5/6764
ISBN:978-972-97874-4-7
Title of the source (English):2nd European Agroforestry Conference: Integrating Science and Policy to Promote Agroforestry in Practice, June 2014, Cottbus, Germany
Editor: Joao H. N. Palma
Document Type:Conference Proceeding
Language:English
Year of publication:2014
First Page:253
Last Page:254
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.