• search hit 26 of 837
Back to Result List

Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa

  • Under the conditions of climate change in South Africa, ecological and technical measures are needed to reduce the water consumption of irrigated crops. Windbreak hedges are long-rated systems in agriculture that significantly reduce wind speed. Their possibilities to reduce evapotranspiration and water demand are being investigated at a vineyard in the Western Cape Province, South Africa. Detailed measurements of meteorological parameters relevant for the computation of reference and crop-specific evapotranspiration following the FAO 56 approaches within a vineyard in the Western Cape Province of South Africa have shown the beneficial effect of an existing hedgerow consisting of 6 m high poplars (Populus simonii (Carrière) Wesm.). With reference to a control station in the open field, the mean wind speed in a position about 18 m from the hedgerow at canopy level (2 m) was reduced by 27.6% over the entire year and by 39.2% over the summer growing season. This effect leads to a parallel reduction of reference evapotranspiration ofUnder the conditions of climate change in South Africa, ecological and technical measures are needed to reduce the water consumption of irrigated crops. Windbreak hedges are long-rated systems in agriculture that significantly reduce wind speed. Their possibilities to reduce evapotranspiration and water demand are being investigated at a vineyard in the Western Cape Province, South Africa. Detailed measurements of meteorological parameters relevant for the computation of reference and crop-specific evapotranspiration following the FAO 56 approaches within a vineyard in the Western Cape Province of South Africa have shown the beneficial effect of an existing hedgerow consisting of 6 m high poplars (Populus simonii (Carrière) Wesm.). With reference to a control station in the open field, the mean wind speed in a position about 18 m from the hedgerow at canopy level (2 m) was reduced by 27.6% over the entire year and by 39.2% over the summer growing season. This effect leads to a parallel reduction of reference evapotranspiration of 15.5% during the whole year and of 18.4% over the growing season. When applying empirical crop-specific Kc values for well-irrigated grapes, the reduction of evapotranspiration is 18.8% over the summer growth period. The introduced tree shelterbelts are a suitable eco-engineering approach to reduce water consumption and to enhance water saving in vineyards.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Maik VesteORCiD, Thomas Littmann, Anton Kunneke, Ben Du Toit, Thomas Seifert
URL:https://www.agriculturejournals.cz/web/pse.htm?type=article&id=616_2019-PSE
DOI:https://doi.org/10.17221/616/2019-PSE
ISSN:1214-1178
ISSN:1805-9368
Title of the source (English):Plant, Soil and Environment
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2020
Tag:agroforestry; climate change; dry areas; viticulture
Volume/Year:66
Issue number:3
First Page:119
Last Page:127
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.