• search hit 62 of 837
Back to Result List

Crystallization of single and binary iron- and aluminum hydroxides affect phosporus desorption

  • In acidic soils, phosphorus availability is affected by its strong affinity for mineral surfaces, especially Fe- and Al-hydroxides. Plant roots have developed adaptive strategies to enhance the availability of phosphorus, including producing and exuding low molecular weight organic acids with a high affinity for phosphorus that competes with high molecular weight organic ligands formed during humification and mineralization. The aim of this study was to characterize the kinetics and mechanism of phosphorus desorption from Fe- and Al-hydroxides of variable crystallinity, as well as binary Fe:Al-hydroxide mixtures. Long-term desorption experiments (56 days) were conducted with CaCl₂, CaSO₄, citric acid, and humic acid as competitive sorptives. CaCl₂ and CaSO₄ were selected as general inorganic sorptives and citric and humic acids were selected as organic ligands produced by organisms in the rhizosphere or following humification. The cumulative phosphorus desorption increased following the order CaCl₂< CaSO₄< humic acid < citric acid.In acidic soils, phosphorus availability is affected by its strong affinity for mineral surfaces, especially Fe- and Al-hydroxides. Plant roots have developed adaptive strategies to enhance the availability of phosphorus, including producing and exuding low molecular weight organic acids with a high affinity for phosphorus that competes with high molecular weight organic ligands formed during humification and mineralization. The aim of this study was to characterize the kinetics and mechanism of phosphorus desorption from Fe- and Al-hydroxides of variable crystallinity, as well as binary Fe:Al-hydroxide mixtures. Long-term desorption experiments (56 days) were conducted with CaCl₂, CaSO₄, citric acid, and humic acid as competitive sorptives. CaCl₂ and CaSO₄ were selected as general inorganic sorptives and citric and humic acids were selected as organic ligands produced by organisms in the rhizosphere or following humification. The cumulative phosphorus desorption increased following the order CaCl₂< CaSO₄< humic acid < citric acid. Amorphous ferrihydrite and Fe-rich Fe:Al-hydroxides exhibited much less desorption when exposed to inorganic solutions than the crystalline and Al-rich Fe:Al-hydroxide mixtures. Models of the desorption data suggest phosphorus desorption with citric acid is diffusion- controlled for ferrihydrite and Fe-rich amorphous Fe:Al-hydroxides. When humic acid was the sorptive, metal-organic complexes accumulated in the solution. The results suggest organic compounds, especially citric acid, are more important for liberating phosphorus from Fe- and Al-minerals than inorganic ions present in the soil solution.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Stella GypserORCiD, Elisabeth Schütze, Dirk FreeseORCiD
DOI:https://doi.org/10.1002/jpln.201700543
ISSN:1522-2624
Title of the source (English):Journal of Plant Nutrition and Soil Science
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Volume/Year:182
Issue number:5
First Page:741
Last Page:750
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.