• search hit 59 of 837
Back to Result List

New insights into IR spectroscopic characterization of phosphate binding at the goethite-water interface

  • Facing the projected peak phosphorus (P) scenario, substantial research activities have been triggered to improve our knowledge towards a more efficient and sustainable use of P resources. One major factor playing a role in the P immobilization and thus its availability for plants is the strong interaction between phosphates and soil mineral surfaces, such as Fe- and Al-(oxyhydr)oxides. The reactions of phosphates with Fe-hydroxides and especially goethite have been studied extensively. But a molecular-level picture of the phosphate binding mechanism at the goethite-water interface is still lacking. Therefore, in the current contribution we have explored the molecular binding mechanism for the adsorbed phosphate at the goethite–water interface by performing sorption kinetics experiments for orthophosphate and characterizing the adsorbed species by FT-IR spectroscopy. In parallel, periodic quantum mechanical calculations, at the density functional theory (DFT) level, have been performed to explore the interaction mechanism as well asFacing the projected peak phosphorus (P) scenario, substantial research activities have been triggered to improve our knowledge towards a more efficient and sustainable use of P resources. One major factor playing a role in the P immobilization and thus its availability for plants is the strong interaction between phosphates and soil mineral surfaces, such as Fe- and Al-(oxyhydr)oxides. The reactions of phosphates with Fe-hydroxides and especially goethite have been studied extensively. But a molecular-level picture of the phosphate binding mechanism at the goethite-water interface is still lacking. Therefore, in the current contribution we have explored the molecular binding mechanism for the adsorbed phosphate at the goethite–water interface by performing sorption kinetics experiments for orthophosphate and characterizing the adsorbed species by FT-IR spectroscopy. In parallel, periodic quantum mechanical calculations, at the density functional theory (DFT) level, have been performed to explore the interaction mechanism as well as to calculate the IR spectra for monodentate (M) and bidentate (B) orthophosphate complexes with goethite at two different goethite surface planes (010 and 100) in the presence of water. In general, our interaction energy results give evidence that the mono-protonated B phosphate complex is more favored to be formed at the goethite–water interface although the M motif could exist as a minor fraction. Moreover, it was found that water plays an important role in controlling the phosphate adsorption process at the goethite surfaces. The interfacial water molecules form H-bonds (HBs) with the phosphate as well as with the goethite surface atoms. Further, some water molecules form covalent bonds with goethite Fe atoms while others dissociate at the surface to protons and hydroxyl groups. The present theoretical assignment of IR spectra introduces a benchmark for characterizing experimental IR data for the adsorbed KH2PO4 species at the goethite–water interface. In particular, IR spectra of the mono-protonated (2O+1Fe) B complex at the 010 goethite surface plane and the M complex at the 100 goethite surface plane were found to be consistent with the experimental data. In order to explore the role of different abundancies of surface planes and binding motifs, IR spectra obtained from weighted averages have been analyzed. Results confirmed the above conclusions drawn from interaction energy calculations. Moreover, the soil solution pH effect on the phosphate binding mechanism to goethite surface has been explored as well.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Ashour A. AhmedORCiD, Stella GypserORCiD, Peter Leinweber, Dirk FreeseORCiD, Oliver KühnORCiD
URL:https://pure.au.dk/portal/files/159039284/IPW9_AbstractBook.pdf
Title of the source (English):IPW9, ETH Zurich, Switzerland, 8-12 July, 2019 - Abstracts
Place of publication:Zürich
Document Type:Conference publication not peer-reviewed
Language:English
Year of publication:2019
First Page:108
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.