• search hit 89 of 237
Back to Result List

Estimability Analysis for Optimization of Hysteretic Soil Hydraulic Parameters Using Data of a Field Irrigation Experiment

  • To improve the quality of parameter optimization, estimability analysis has been proposed as the first step before inverse modeling. When using field data of irrigation experiments for the determination of soil hydraulic parameters, wetting and drying processes may complicate optimization. The objectives of this study were to compare estimability analysis and inverse optimization of the soil hydraulic parameters in the models with and without considering hysteresis of the soil water retention function. Soil water pressure head data of a field irrigation experiment were used. The one-dimensional vertical water movement in variably saturated soil was described with the Richards equation using the HYDRUS-1D code. Estimability of the unimodal van Genuchten–Mualem hydraulic model parameters as well as of the hysteretic parameter model of Parker and Lenhard was classified according to a sensitivity coefficient matrix. The matrix was obtained by sequentially calculating effects of initial parameter variations on changes in the simulatedTo improve the quality of parameter optimization, estimability analysis has been proposed as the first step before inverse modeling. When using field data of irrigation experiments for the determination of soil hydraulic parameters, wetting and drying processes may complicate optimization. The objectives of this study were to compare estimability analysis and inverse optimization of the soil hydraulic parameters in the models with and without considering hysteresis of the soil water retention function. Soil water pressure head data of a field irrigation experiment were used. The one-dimensional vertical water movement in variably saturated soil was described with the Richards equation using the HYDRUS-1D code. Estimability of the unimodal van Genuchten–Mualem hydraulic model parameters as well as of the hysteretic parameter model of Parker and Lenhard was classified according to a sensitivity coefficient matrix. The matrix was obtained by sequentially calculating effects of initial parameter variations on changes in the simulated pressure head values.Optimization was carried out by means of the Levenberg-Marquardt method implemented in the HYDRUS-1D code. The parameters α, Ks, θs, and n in the nonhysteretic model were found sensitive and parameter θs strongly correlated with parameter n. When assuming hysteresis, the estimability was decreased with soil depth for Ks and αd , and increased for θs and n. Among the shape parameters, αw was the most estimable. The hysteretic model could approximate the pressure heads in the soil by considering parameters from wetting and drying periods separately as initial estimates. The inverse optimization could be carried out more efficiently with most estimable parameters. Despite the remaining weaknesses of the local optimization algorithm and the inflexibility of the unimodal van Genuchten model, the results suggested that estimability analysis could be considered as a guidance to better define the optimization scenarios and then improved the determination of soil hydraulic parameters.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Viet V. Ngo, Horst H. Gerke, Annika Badorreck
DOI:https://doi.org/10.1007/s11242-014-0315-6
Title of the source (English):Transport in Porous Media
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2014
Volume/Year:103
Issue number:3
First Page:535
Last Page:562
Faculty/Chair:Zentrale Einrichtungen / Forschungszentrum Landschaftsentwicklung und Bergbaulandschaften (FZLB)
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.