• search hit 10 of 12
Back to Result List

Manufacturing Simple and Inexpensive Soil Surface Temperature and Gravimetric Water Content Sensors

  • Quantifying temperature and moisture at the soil surface is essential for understanding how soil surface biota responds to changes in its environment. However, at the soil surface these variables are highly dynamic and standard sensors do not explicitly measure temperature or moisture in the upper few millimeters of the soil profile. This manuscript describes methods for manufacturing simple, inexpensive sensors that simultaneously measure the temperature and moisture of the upper 5 mm of the soil surface. In addition to sensor construction, steps for quality control, as well as for calibration for various substrates, are explained. The sensors incorporate a Type E thermocouple to measure temperature and assess soil moisture by measuring the resistance between two gold-plated metal probes at the end of the sensor at a depth of 5 mm. The methods presented here can be altered to customize probes for different depths or substrates. These sensors have been effective in a variety of environments and have endured months of heavy rains inQuantifying temperature and moisture at the soil surface is essential for understanding how soil surface biota responds to changes in its environment. However, at the soil surface these variables are highly dynamic and standard sensors do not explicitly measure temperature or moisture in the upper few millimeters of the soil profile. This manuscript describes methods for manufacturing simple, inexpensive sensors that simultaneously measure the temperature and moisture of the upper 5 mm of the soil surface. In addition to sensor construction, steps for quality control, as well as for calibration for various substrates, are explained. The sensors incorporate a Type E thermocouple to measure temperature and assess soil moisture by measuring the resistance between two gold-plated metal probes at the end of the sensor at a depth of 5 mm. The methods presented here can be altered to customize probes for different depths or substrates. These sensors have been effective in a variety of environments and have endured months of heavy rains in tropical forests as well as intense solar radiation in deserts of the southwestern U.S. Results demonstrate the effectiveness of these sensors for evaluating warming, drying, and freezing of the soil surface in a global change experiment.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Armin Howell, Colin Tucker, Ed Grote, Maik VesteORCiD, Jayne Belnap, Gerhard Kast, Bettina WeberORCiD, Sasha C. Reed
DOI:https://doi.org/10.3791/60308
ISSN:1940-087X
Title of the source (English):Journal of Visualized Experiments
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Volume/Year:154
Number of pages:13
Article number:e60308
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.