• search hit 3 of 12
Back to Result List

Hotspot biocrusts: Combining chlorophyll fluorescence and NDVI to analyze spatial and temporal variations of photosynthesis

  • Biological soil crusts (biocrusts) play an important role as pioneering organisms on initial soils and in open landscapes after natural and human disturbances. Even though they only cover the topsoil, biocrusts are key drivers for biogeochemical and ecological processes and influencing ecosystem development. Microclimatic conditions, texture, water holding capacity, and chemical soil properties lead to the formation of spatial patterns. Sandy nutrient-poor soils in pine forests in the open-cast lignite mining district in Brandenburg are covered by biocrust, dominated by different functional types and species (e.g. algae, mosses, lichens). The photosynthetic activity of these poikilohydric organisms, strongly depending on moisture, affects biocrust function and their impact on soil C pools and dynamics. Therefore, the evaluation of photosynthesis in relation to the spatial distribution pattern variation is fundamental. For this purpose, we combined different remote sensing techniques, spectral reflectance sensors, and chlorophyllBiological soil crusts (biocrusts) play an important role as pioneering organisms on initial soils and in open landscapes after natural and human disturbances. Even though they only cover the topsoil, biocrusts are key drivers for biogeochemical and ecological processes and influencing ecosystem development. Microclimatic conditions, texture, water holding capacity, and chemical soil properties lead to the formation of spatial patterns. Sandy nutrient-poor soils in pine forests in the open-cast lignite mining district in Brandenburg are covered by biocrust, dominated by different functional types and species (e.g. algae, mosses, lichens). The photosynthetic activity of these poikilohydric organisms, strongly depending on moisture, affects biocrust function and their impact on soil C pools and dynamics. Therefore, the evaluation of photosynthesis in relation to the spatial distribution pattern variation is fundamental. For this purpose, we combined different remote sensing techniques, spectral reflectance sensors, and chlorophyll fluorescence imaging to analyze the photosynthetic dynamics in relation to biocrust species composition and wetness. Desiccation of the biocrusts was detected with a miniature moisture sensor and related to their activity. A low-cost consumer grade camera was used to determine NDVI and to map the distribution and heterogeneity of chlorophyll for a comprehensive characterization of spatial photosynthetic activity pattern. Basic as well as maximum fluorescence, the maximum photochemical efficiency, and NDVI decreased during desiccation of the biocrusts, whereby moss and moss/lichen biocrusts showed higher water holding capacities relative to green algae biocrusts. The combination of different sensor technologies is a powerful tool for monitoring long-term biocrust development and their implication for soil C dynamics.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Stella GypserORCiD, Maik VesteORCiD
URL:https://www.gfoe-conference.de/WEBS/GFOe2019.pages.download/Book_of_Abstracts2019.pdf
Title of the source (English):GfÖ 2019, Science Meets Practice, 49th Annual Meeting of the Ecological Society of Germany, Austria and Switzerland, university of Münster, 9-13 September 2019
Document Type:Conference publication not peer-reviewed
Language:English
Year of publication:2019
First Page:199
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.