• search hit 9 of 131
Back to Result List

Biological soil crusts decrease soil temperature in summer and increase soil temperature in winter in semiarid environment

  • In hot and wet conditions in summer, the biological soil crusts (BSCs) decreased soil temperature by up to 11.8 °C, 7.5 °C, 5.4 °C, and 3.2 °C at surface, 5 cm, 15 cm, and 30 cm, respectively; while in cold and dry conditions in winter the BSCs increased soil temperature by up to 1.2 °C, 1.2 °C, and 1.1 °C at 5 cm, 15 cm, and 30 cm, respectively. The daily mean soil temperatures of the BSCs in a whole year were averagely increased by 0.57 ± 0.04 °C, 0.31 ± 0.04 °C, and 0.22 ± 0.04 °C at 5 cm, 15 cm, and 30 cm, respectively. The effects of the BSCs on soil temperature were positively correlated with air temperature and soil moisture, and decreased with soil depth from surface to deep soil. We concluded that BSCs relieved the extreme hot and cold soil micro-environments in desert ecosystem to some extent. Therefore their effects on soil temperature are positive for improving water and nutrient availability and biological community structure, thus decreasing susceptibility to desertification. These results would be helpful forIn hot and wet conditions in summer, the biological soil crusts (BSCs) decreased soil temperature by up to 11.8 °C, 7.5 °C, 5.4 °C, and 3.2 °C at surface, 5 cm, 15 cm, and 30 cm, respectively; while in cold and dry conditions in winter the BSCs increased soil temperature by up to 1.2 °C, 1.2 °C, and 1.1 °C at 5 cm, 15 cm, and 30 cm, respectively. The daily mean soil temperatures of the BSCs in a whole year were averagely increased by 0.57 ± 0.04 °C, 0.31 ± 0.04 °C, and 0.22 ± 0.04 °C at 5 cm, 15 cm, and 30 cm, respectively. The effects of the BSCs on soil temperature were positively correlated with air temperature and soil moisture, and decreased with soil depth from surface to deep soil. We concluded that BSCs relieved the extreme hot and cold soil micro-environments in desert ecosystem to some extent. Therefore their effects on soil temperature are positive for improving water and nutrient availability and biological community structure, thus decreasing susceptibility to desertification. These results would be helpful for understanding the ecological and hydrological functions of BSCs in semiarid environment.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Bo Xiao, Huifang Wang, Jun Fan, Thomas FischerORCiD, Maik VesteORCiD
DOI:https://doi.org/10.1016/j.ecoleng.2013.06.009
ISSN:0925-8574
Title of the source (English):Ecological Engineering
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2013
Volume/Year:58
First Page:52
Last Page:56
Faculty/Chair:Zentrale Einrichtungen / Zentrale Analytik der BTU Cottbus-Senftenberg (ZA-BTU) / Zentrales Analytisches Labor
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / Zentrales Analytisches Labor
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.