• search hit 25 of 29
Back to Result List

The effect of nitrogen-modified lignite granules on mycorrhization and root and shoot growth of Secale cereale (winter rye) in a nutrient-deficient, sandy soil

  • Organic soil amendments such as modified lignite and biostimulants like arbuscular mycorrhizal fungi (AMF) may have the potential to improve soil biological conditions of agricultural soils. The aim of the study was to test if nitrogen-modified lignite granules (NH) are beneficial for mycorrhization, root and shoot development compared to common mineral nitrogen (Nmin) in a nitrogen and phosphorus limited soil. A greenhouse experiment with Secale cereale L. was carried out using non-sterilized and sterilized sand substrate treated with NH, AMF or Nmin and AMF+NH and AMF+Nmin and was compared to an untreated substrate (control). 7.5 t ha-1 NH and 120 kg Nmin ha−1 led to a similar increase of AMF colonization compared to the control; however, Nmin had a more positive influence on biomass development. Significantly highest mycorrhizal colonization intensity was found for AMF+NH. The co-application of AMF+NH revealed that shoot and root development and shoot nutrient concentrations were significantly higher or were among theOrganic soil amendments such as modified lignite and biostimulants like arbuscular mycorrhizal fungi (AMF) may have the potential to improve soil biological conditions of agricultural soils. The aim of the study was to test if nitrogen-modified lignite granules (NH) are beneficial for mycorrhization, root and shoot development compared to common mineral nitrogen (Nmin) in a nitrogen and phosphorus limited soil. A greenhouse experiment with Secale cereale L. was carried out using non-sterilized and sterilized sand substrate treated with NH, AMF or Nmin and AMF+NH and AMF+Nmin and was compared to an untreated substrate (control). 7.5 t ha-1 NH and 120 kg Nmin ha−1 led to a similar increase of AMF colonization compared to the control; however, Nmin had a more positive influence on biomass development. Significantly highest mycorrhizal colonization intensity was found for AMF+NH. The co-application of AMF+NH revealed that shoot and root development and shoot nutrient concentrations were significantly higher or were among the significantly highest values, when compared to the other treatments. AMF+NH may be a suitable soil amendment for nutrient-limited soils and may be more sustainable than Nmin due to a combined increase of nitrogen, AMF and carbon/humic acids in the soil that comes with the NH.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Katja Boldt-BurischORCiD, Steffi SchillemORCiD, Bernd Uwe Schneider, Reinhard F. HüttlGND
DOI:https://doi.org/10.1080/03650340.2020.1869724
ISSN:1476-3567
Title of the source (English):Archives of Agronomy and Soil Science
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2020
Number of pages:14
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.