• search hit 6 of 29
Back to Result List

Root exudation of organic acids of herbaceous pioneer plants and their growth in steriled and non-steriled nutrient-poor, sandy soils from post-mining sites

  • Nutrient-poor, sandy soils form the prevailing substrate at post-mining sites and present a challenge for plants. We studied the organic acid quantity and composition of three commonly occurring pioneer plant species, the legumes Lotus corniculatus L. and Trifolium arvense L. and the grass Calamagrostis epigeios (L.) Roth, to determine if plant growth and exudation differed with (nonsterile soil) and without (sterile soil) an indigenous soil microbial community. We investigated whether organic acids were found in the rhizosphere and surrounding soil and whether this influenced nutrient mobilization. This study consists of linked field investigations and a greenhouse experiment. Plants were grown in the greenhouse in either steriled or non-steriled sandy soil from a reclamation site in the Lusatian mining landscape (Welzow S¨ud, East Germany). After seven months, the plant biomass, root morphology, organic acids, and water-soluble nutrients and root colonization with arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE)Nutrient-poor, sandy soils form the prevailing substrate at post-mining sites and present a challenge for plants. We studied the organic acid quantity and composition of three commonly occurring pioneer plant species, the legumes Lotus corniculatus L. and Trifolium arvense L. and the grass Calamagrostis epigeios (L.) Roth, to determine if plant growth and exudation differed with (nonsterile soil) and without (sterile soil) an indigenous soil microbial community. We investigated whether organic acids were found in the rhizosphere and surrounding soil and whether this influenced nutrient mobilization. This study consists of linked field investigations and a greenhouse experiment. Plants were grown in the greenhouse in either steriled or non-steriled sandy soil from a reclamation site in the Lusatian mining landscape (Welzow S¨ud, East Germany). After seven months, the plant biomass, root morphology, organic acids, and water-soluble nutrients and root colonization with arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) were analyzed. Roots of all three plants in the field and greenhouse experiments were highly colonized with AMF. Calamagrostis epigeios and T. arvense had a significantly higher colonization frequency with DSE than L. corniculatus. The quantity and composition of organic acids strongly differed among plant species, with the highest number of organic acids found for L. corniculatus and lowest for C. epigeios. The quantity of organic acids was greatly reduced in all plants under steriled soil conditions. However, the composition of organic acids and plant growth in steriled soil were reduced for both legumes, but not for C. epigeios, which had a higher biomass under steriled conditions. Changes in nutrient concentrations in the field rhizosphere soil relative to those in the control were measurable after seven months. While the spectrum of organic acids and the growth of legumes seemed to be dependent on a highly diverse soil microbial community and a symbiotic partner, the grass C. epigeios appeared capable of mobilizing enough nutrients without an indigenous microbial community, and might be more competitive on sites where soil microbial diversity and activity are low.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Katja Boldt-BurischORCiD, Bernd Uwe Schneider, M. Anne Naeth, Reinhard F. HüttlGND
DOI:https://doi.org/10.1016/S1002-0160(18)60056-6
ISSN:1002-0160
Title of the source (English):Pedosphere
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Volume/Year:29
Issue number:1
First Page:34
Last Page:44
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.