TY - CHAP A1 - Zaplata, Markus Klemens A1 - Maurer, Thomas A1 - Boldt-Burisch, Katja A1 - Schaaf, Wolfgang A1 - Hinz, Christoph T1 - An interactive survey panel regarding the effects of mice (Microtus spec.) on a young ecosystem T2 - European Geosciences Union, General Assembly 2015, Vienna, Austria, 13 April - 17 May 2015 KW - interactive survey panel Y1 - 2015 UR - http://meetingorganizer.copernicus.org/EGU2015/EGU2015-13818.pdf N1 - EGU2015-13818 PB - European Geophysical Society CY - Katlenburg-Lindau ER - TY - CHAP A1 - Zaplata, Markus Klemens A1 - Kollmann, Johannes A1 - Ulrich, Werner A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Gerwin, Werner A1 - Fischer, Anton ED - Jeltsch, Florian ED - Joshi, Jasmin T1 - Cover balance or degree of autocorrelation? It is the same and integratively traces pattern formation during succession T2 - GfÖ 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany N2 - It is widely acknowledged that increasing complexity is a key attribute of ecosystem genesis. This is particularly true for primary succession on homogeneous substrates. However, a mechanistic understanding of spatial colonisation and pattern formation during primary succession has not been achieved yet. Thus, we studied this topic for 7 years within an experimental catchment (6 ha) established in the post-mining landscape of eastern Germany. Equidistant permanent plots (120 plots à 25m²) allowed for autocorrelation analyses, and thus tracing the spatial development of species cover performance. For each species tested, the “cover balance” first increased due to colonization, while decreasing in the course of succession. Drawing a benefit from these temporal trends, we suggested cover balance levels revealed by autocorrelation analyses to best indicate well-defined phases in primary succession at spatial entities. Hence, with the help of this spatial approach, terrestrial succession can be understood now much better at the most general level of the hierarchy provided by Pickett et al. (1987). In accordance with these authors, at subordinated levels of the causal hierarchy differential species performance might get collectively explained by contributing processes or conditions, such as ecophysiological traits, life history strategies, competition and allelopathy of the occurring plant species. Further research is needed to understand their relative contributions to the pattern formation. Y1 - 2013 UR - http://www.gfoe-2013.de/download/130905_GFOe_2013_Abstracts.small.pdf SP - 228 EP - 229 ER - TY - GEN A1 - Zaplata, Markus Klemens A1 - Fischer, A. A1 - Winter, S. A1 - Schaaf, Wolfgang A1 - Veste, Maik ED - Holzheu, Stefan ED - Thies, B. T1 - Development of an initial ecosystem - II. Vegetation dynamics and soil pattern in an artificial water catchment in Lusatia, NE Germany T2 - GfÖ 2009: Dimensions of ecology - From global change to molecular ecology Y1 - 2009 SP - S. 124 PB - Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER) Selbstverlag CY - Bayreuth ER - TY - GEN A1 - Wanner, Manfred A1 - Elmer, Michael A1 - Sommer, Michael A1 - Funk, Roger A1 - Puppe, Daniel T1 - Testate amoebae colonizing a newly exposed land surface are of airborne origin T2 - Ecological Indicators N2 - We hypothesized that at the very beginning of terrestrial ecosystem development, airborne testate amoebae play a pivotal role in facilitating organismic colonization and related soil processes. We, therefore, analyzed size and quantity of airborne testate amoebae and immigration and colonization success of airborne testate amoebae on a new land surface (experimental site “Chicken Creek”, artificial post-mining water catchment). Within an altogether 91-day exposure of 70 adhesive traps, 12 species of testate amoebae were identified to be of airborne origin. Phryganella acropodia (51% of all individuals found, diameter about 35–45 μm) and Centropyxis sphagnicola (23% of all individuals found, longest axis about 55–68 μm), occurred most frequently in the adhesive traps. We extrapolated an aerial amoeba deposition of 61 individuals d−1 m−2 (living and dead individuals combined). Although it would be necessary to have a longer sequence (some additional years), our analysis of the “target substrate” of aerial immigration (catchment site) may point to a shift from a stochastic (variable) beginning of community assembly to a more deterministic (stable) course. This shift was assigned to an age of seven years of initial soil development. Although experienced specialists are necessary to conduct these time-consuming studies, the presented data suggest that terrestrial amoebae are suitable indicators for initial ecosystem development and utilization. Y1 - 2015 U6 - https://doi.org/10.1016/j.ecolind.2014.07.037 SN - 1470-160x VL - 48 SP - 55 EP - 62 ER - TY - GEN A1 - Wanner, Manfred A1 - Elmer, Michael T1 - "Hot spots" on a new soil surface – how do testate amoebae settle down? T2 - Acta Protozoologica Y1 - 2009 SN - 1689-0027 VL - 48 IS - 3 SP - 281 EP - 289 ER - TY - GEN A1 - Veste, Maik A1 - Gerwin, Werner A1 - Biemelt, Detlef A1 - Fischer, A. A1 - Schaaf, Wolfgang ED - Ukonmaanaho, Liisa ED - Nieminen, Tiina Maileena ED - Starr, Michael T1 - Monitoring of ecosystem patterns and processes in an artificial catchment in Lusatia, Germany T2 - 6th International Symposium on Ecosystem Behaviour BIOGEOMON 2009 Y1 - 2009 UR - http://www.metla.fi/julkaisut/workingpapers/2009/mwp128.pdf SN - 978-951-40-2177-0 SP - S. 84 PB - Finnish Forest Research Institute CY - Vantaa, Finland ER - TY - GEN A1 - Veste, Maik A1 - Dominik, R. A1 - Dimitrov, M. A1 - Fischer, A. A1 - Gerwin, Werner A1 - Schaaf, Wolfgang ED - Stadler, Jutta ED - Schöppe, Felix ED - Frenzel, Mark T1 - Novel drone-based system for ecosystem monitoring - application, analysis and interpretation T2 - EURECO-GFOE 2008, Proceedings Y1 - 2008 SN - 978-3-00-025522-9 SP - S. 809 PB - Gesellschaft für Ökologie CY - Berlin ER - TY - GEN A1 - Veste, Maik A1 - Biemelt, Detlef A1 - Fischer, A. A1 - Gerwin, Werner A1 - Schaaf, Wolfgang T1 - The "Point Zero": Monitoring of biogeochemical patterns and processes in an artificial ecosystem (Lusatia, Germany) T2 - EGU General Assembly 2009, Vienna, Austria, 19 – 24 April 2009 Y1 - 2009 N1 - EGU2009-5292 PB - European Geophysical Society CY - Katlenburg-Lindau ER - TY - CHAP A1 - Veste, Maik ED - Korn, Horst ED - Schliep, Rainer ED - Stadler, Jutta T1 - Auswirkungen des Klimawandels auf die Waldvegetation: Anpassungsfähigkeit und ihre Grenzen T2 - Biodiversität und Klima - Vernetzung der Akteure in Deutschland IV, Ergebnisse und Dokumentation des 4. Workshops Y1 - 2009 UR - http://www.bfn.de/fileadmin/MDB/documents/service/Skript246.pdf SP - 31 EP - 34 PB - BfN CY - Bonn ER - TY - GEN A1 - Ulrich, Werner A1 - Piwczynski, Marcin A1 - Zaplata, Markus Klemens A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Fischer, Anton T1 - Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties T2 - Oecologia N2 - During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors. Y1 - 2014 U6 - https://doi.org/10.1007/s00442-014-2954-2 VL - 175 IS - 3 SP - 985 EP - 995 ER -