TY - GEN A1 - Lebzien, Stefan A1 - Veste, Maik A1 - Fechner, H. A1 - Koning, Laurie Anne A1 - Mantovani, Dario A1 - Freese, Dirk T1 - The Giant Knotweed (Fallopia sachalinensis var. Igniscum) as a new plant resource for biomass production for bioenergy T2 - EGU General Assembly 2012, held 22-27 April, 2012 in Vienna, Austria Y1 - 2012 N1 - EGU2012-6060 PB - European Geophysical Society CY - Kattenburg-Lindau ER - TY - GEN A1 - Mantovani, Dario A1 - Veste, Maik A1 - Gypser, Stella A1 - Halke, Christian A1 - Koning, Laurie Anne A1 - Freese, Dirk A1 - Lebzien, Stefan T1 - Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients T2 - Journal of Hydrology and Hydromechanics N2 - Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis), which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100%) and nitrogen fertilization (0, 50, 100, 150 kg N ha–1). Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m–2 s–1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m–2 s–1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed) and 141 l (well-watered) per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg–1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop. Y1 - 2014 U6 - https://doi.org/10.2478/johh-2014-0028 SN - 0042-790X VL - 62 IS - 4 SP - 316 EP - 323 ER - TY - GEN A1 - Koning, Laurie Anne A1 - Veste, Maik A1 - Freese, Dirk A1 - Lebzien, Stefan T1 - Effects of nitrogen and phsphate fertilization on leaf nutrient content, photosythesis, and growth of the novel bioenergy crop Fallopia schalinensis vc. 'Igniscum Candy' T2 - Journal of Applied Botany and Food Quality N2 - The aim of the study was to determine the effects of nitrogen and phosphate fertilization on the growth performance of the novel bioenergy crop Fallopia sachalinensis cv. ‘Igniscum Candy’ (Polygonaceae). In a controlled pot experiment various nitrogen (0, 50, 150, 300 kg N ha-1) and phosphate (20, 40, 80 kg P ha-1) fertilizer amounts were applied to measure the effect on the biomass, plant height, leaf area, and leaf nutrient (N and P) content. Furthermore, the ecophysiological processes of chlorophyll content, chlorophyll fluorescence, and gas exchange were measured. The application of nitrogen correlated positively with biomass production, while phosphate fertilization did not show a significant effect on plant growth or ecophysiological parameters. The leaf nitrogen contents were significantly correlated with the nitrogen applications, while the leaf phosphate contents did not show a correlation with the P fertilizations, but increased with the leaf nitrogen contents. A significant linear correlation between N-Tester chlorophyll meter values and chlorophyll contents as well as with leaf nitrogen contents could be determined. Under the influence of the nitrogen fertilization, net photosynthesis increased from 3.7 to 6.6 μmol m-2 s-1. The results of this experiment demonstrated that nitrogen fertilization has an overall positive correlation with leaf nitrogen content, photosynthesis, and growth of the bioenergy crop Fallopia sachalinensis var. Igniscum Candy. Y1 - 2015 U6 - https://doi.org/10.5073/JABFQ.2015.088.005 SN - 1439-040X VL - 88 SP - 22 EP - 28 ER - TY - CHAP A1 - Halke, Christian A1 - Gypser, Stella A1 - Mantovani, Dario A1 - Lebzien, Stefan A1 - Freese, Dirk A1 - Veste, Maik ED - Jeltsch, Florian ED - Joshi, Jasmin T1 - Yield, transpiration and growth of the new bioenergy crop IGNISCUM Candy under different water regimes T2 - GfÖ 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany N2 - There is a growing global need to produce more energy and reducing greenhouse gas emissions. One possible source of renewable energy in parts of Europe is the use of crop for bioenergy production. Currently, maize dominates the biogas production. For a diversified production of substrates alternative crops needs to be evaluated for their sustainable utilization and ecological integration into agro-systems. The new bioenergy plants IGNISCUM Candy and IGNISCUM Basic are cultivars of the Sakhalin Knotweed (Fallopia sachalinensis, Fam. Polygonaceae), which are characterized by a high annual biomass production. Information on the crop production of this species is rare. Hence, understanding plant response to the combinations of water and nutrients availability is crucial for the development of sustainable plant production. In greenhouse experiments we investigate the interrelations between nutrient supply, biomass production, and plant ecophysiology. For the determination of yield-transpiration relations at whole plant level we used a wick lysimeter system, which allows us to study plant growth under controlled water regimes and to calculate the plant transpiration. The irrigation is supplied by an automatic drip irrigation system and computer-controlled in relation to the volumetric soil water content. Four different water treatments associated to the SWC range from well-watered to drought stressed plants. The influence of plant sizes on plant water use was investigated under different nitrogen supply. The fertilizer applied is calcium ammonium nitrate (N) and the rates for the four treatments are 0, 50, 100, 150 kg N/ha at the beginning of the growing season. Plant transpiration is calculated on the basis of water input, storage and drainage in weekly intervals. The cumulative transpiration of the plants during the growing season is between 49 L (drought stressed) and 141 L (well-watered) per plant, respectively. We calculated a transpiration coefficient of 525 Liters per kg dry biomass. Y1 - 2013 UR - http://www.gfoe-2013.de/download/130905_GFOe_2013_Abstracts.small.pdf SP - 32 EP - 33 ER -