TY - CHAP A1 - Mantovani, Dario A1 - Veste, Maik A1 - Freese, Dirk ED - Jeltsch, Florian ED - Joshi, Jasmin T1 - Biomass production in agro-­‐systems: Is black locust (Robinia pseudoacacia L.) the right choice? T2 - GfÖ 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany N2 - Currently, black locust (Robinia pseudoacacia L.) is an important tree species in Central and Eastern Europe for the production of biomass in short-rotation plantations. Being a ruderal species and relatively drought tolerant compared to other broad leaf trees, its use in agroforestry systems will increase. That is particularly true for marginal landscapes characterized by adverse edaphic conditions, where the soil water availability is limited and in summer drought can occur. Several studies have been carried out on the subject of the black locust primary production; however there are still open questions associated with its water consumption and the biomass production, in relation to the soil water availability. In order to investigate the soil-plant-atmosphere system interactions, in our studies the links between the growth rate, water use efficiency and the ecophysiological response have been examined in a two year lysimeter experiment. The two years old black locust plants were selected from a recultivated post-mining area (Welzow Süd, Lusatia, Brandenburg) and established in a 100 L wicked lysimeter, installed under a light transmissive roof to avoid uncontrolled water input. During the first vegetation period, the trees were maintained constantly under three different soil moisture regimes (well-watered, moderate, drought), in relation to the hydrostatic state of the lysimeters. For the second vegetation period instead, the plants were subjected to two different irrigation cycles (long term drought stress, short term drought stress), in relation of the drought stress and recovering time duration. The results were satisfactory. At whole plant level the water use efficiency, the growth rate under different soil moisture conditions and the morphological adaptation to drought condition were assessed. In addition, at leaf level we elucidated the relation between the soil moisture together with the atmospheric evaporative demand and the ecophysiological performance in terms of H2O and CO2 rate variation. From the results emerged that the black locust cultivar may have a positive or negative effect on the ecosystem function, depending on the water availability of the areas in object. The tree can tolerate periods of drought by reducing its transpiration rate, yet it is not to be considered a water saving trees species in a well watered condition. Y1 - 2013 UR - http://www.gfoe-2013.de/download/130905_GFOe_2013_Abstracts.small.pdf SP - 28 EP - 29 ER - TY - CHAP A1 - Halke, Christian A1 - Gypser, Stella A1 - Mantovani, Dario A1 - Lebzien, Stefan A1 - Freese, Dirk A1 - Veste, Maik ED - Jeltsch, Florian ED - Joshi, Jasmin T1 - Yield, transpiration and growth of the new bioenergy crop IGNISCUM Candy under different water regimes T2 - GfÖ 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany N2 - There is a growing global need to produce more energy and reducing greenhouse gas emissions. One possible source of renewable energy in parts of Europe is the use of crop for bioenergy production. Currently, maize dominates the biogas production. For a diversified production of substrates alternative crops needs to be evaluated for their sustainable utilization and ecological integration into agro-systems. The new bioenergy plants IGNISCUM Candy and IGNISCUM Basic are cultivars of the Sakhalin Knotweed (Fallopia sachalinensis, Fam. Polygonaceae), which are characterized by a high annual biomass production. Information on the crop production of this species is rare. Hence, understanding plant response to the combinations of water and nutrients availability is crucial for the development of sustainable plant production. In greenhouse experiments we investigate the interrelations between nutrient supply, biomass production, and plant ecophysiology. For the determination of yield-transpiration relations at whole plant level we used a wick lysimeter system, which allows us to study plant growth under controlled water regimes and to calculate the plant transpiration. The irrigation is supplied by an automatic drip irrigation system and computer-controlled in relation to the volumetric soil water content. Four different water treatments associated to the SWC range from well-watered to drought stressed plants. The influence of plant sizes on plant water use was investigated under different nitrogen supply. The fertilizer applied is calcium ammonium nitrate (N) and the rates for the four treatments are 0, 50, 100, 150 kg N/ha at the beginning of the growing season. Plant transpiration is calculated on the basis of water input, storage and drainage in weekly intervals. The cumulative transpiration of the plants during the growing season is between 49 L (drought stressed) and 141 L (well-watered) per plant, respectively. We calculated a transpiration coefficient of 525 Liters per kg dry biomass. Y1 - 2013 UR - http://www.gfoe-2013.de/download/130905_GFOe_2013_Abstracts.small.pdf SP - 32 EP - 33 ER - TY - CHAP A1 - Mantovani, Dario A1 - Veste, Maik A1 - Boldt-Burisch, Katja A1 - Fritsch, Simone ED - Jeltsch, Florian ED - Joshi, Jasmin T1 - Black locust (Robinia pseudoacacia L.) root growth response to different irrigation regimes T2 - GfÖ 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany N2 - Robinia pseudoacacia L. is a pioneer tree species native from North America. Its original range is a climatic region classified as humid to sub-humid, with a mean annual precipitation of 1020 to 1830 mm. However, it grows under a wide range of edaphic and climatic conditions and the species has proven to be relatively drought tolerant. In central Europe, with a continental climate, the species has been successfully cropped for biomass production also on marginal land, even in post-­‐mining areas characterized by water limitation and harsh edaphic conditions. Due its drought tolerance, fast resprouting rate and its ability to live in symbiosis with Rhizobia and thus fix atmospheric nitrogen, black locust could become a key species for short-­‐rotation plantation on marginal land. Several studies have been already carried out to quantify the black locust above ground production and its water use efficiency. However, the relation between the black locust biomass allocation, root system development and plant water use has still to be examined. In our study we evaluated the drought stress effect on black locust below ground biomass production, root distribution, and the root and rhizobial association. Different irrigation regimes were chosen to test the plant’s performance in a lysimeter experiment, under semi-­‐controlled environmental conditions, for the duration of two vegetation periods. From the results obtained we determined the root biomass allocation under different irrigation regimes and identified the close relation between the soil water condition and the rhizobial association. Y1 - 2013 UR - http://www.gfoe-2013.de/download/130905_GFOe_2013_Abstracts.small.pdf SP - 33 EP - 34 ER -