@misc{MoghadasBadorreck, author = {Moghadas, Davood and Badorreck, Annika}, title = {Characterization of soil electrical conductivity from Chicken Creek Catchment using deep learning inversion of geophysical data}, series = {EGU General Assembly 2020, Online, 4-8 May 2020}, journal = {EGU General Assembly 2020, Online, 4-8 May 2020}, doi = {10.5194/egusphere-egu2020-2664}, language = {en} } @misc{MaurerCaviedesVoulliemeGerkeetal., author = {Maurer, Thomas and Caviedes-Voulli{\`e}me, Daniel and Gerke, Horst H. and Hinz, Christoph}, title = {A 3D-spatial approach for modeling soil hydraulic property distributions on the artificial Huehnerwasser catchment}, series = {Geophysical Research Abstracts}, volume = {21}, journal = {Geophysical Research Abstracts}, pages = {1}, abstract = {Knowledge of catchment 3D spatial heterogeneity is crucial for the assessment and modeling of eco-hydrological processes. Especially during the initial development phase of a hydro-geo-system, the primary structural properties have the potential to determine further development pathways. Small-scale heterogeneity (cm to m scale) may have significant effects on processes on larger spatial scales, but is difficult to measure and quantify. The H{\"u}hnerwasser (Chicken Creek) catchment offers the unique opportunity to study early ecosystem development within an initial structural setup that is well-known, from the plot up to the catchment scale. Based on information on the open-cast mining technology, catchment boundaries and sediment properties, we developed a structure generator program for the process-based modeling of specific dumping structures and sediment property distributions on the catchment. The structure generator reproduces the trajectories of spoil ridges and can be conditioned to reproduce actual sediment distributions according to remote sensing and soil sampling data. Alternatively, sediment distribution scenarios can be generated based on geological data from the excavation site, or can be distributed stochastically. Using pedotransfer functions, the effective hydraulic van-Genuchten parameters are then calculated from sediment texture and bulk density. The main application of the 3D catchment model is to provide detailed 3D-distributed flow domain information for hydrological flow modeling. Observation data are available from catchment monitoring are available for determining the boundary conditions (e.g., precipitation), and the calibration / validation of the model (catchment discharge, ground water). The analysis of multiple sediment distribution scenarios allows to evaluate the effect of initial conditions on hydrological behavior development. Generally, the modeling approach can be used to pinpoint the influx of specific soil structural features on ecohydrological processes across spatial scales.}, language = {en} } @misc{MoghadasBadorreck, author = {Moghadas, Davood and Badorreck, Annika}, title = {Soil Moisture Patterns in an artificial water catchment - A machine learning approach from geophysical measurements}, series = {EGU General Assembly 2020, Online, 4-8 May 2020}, journal = {EGU General Assembly 2020, Online, 4-8 May 2020}, doi = {10.5194/egusphere-egu2020-2652}, language = {en} } @misc{MoghadasSchaafGerwinetal., author = {Moghadas, Davood and Schaaf, Wolfgang and Gerwin, Werner and Badorreck, Annika and H{\"u}ttl, Reinhard F.}, title = {Chicken Creek data portal: a web-based R-Shiny platform for terrestrial data repository}, series = {Geophysical Research Abstracts}, volume = {21}, journal = {Geophysical Research Abstracts}, pages = {1}, abstract = {Exploring hydrological and ecological processes plays a key role in understanding ecosystem development. In this respect, the constructed catchment, Chicken Creek (H{\"u}hnerwasser), has been established to promote fundamental and interdisciplinary scientific research. Since 2005, an on-going monitoring program has been established in this catchment to measure hydrological, biological, meteorological, and pedological parameters during the ecological development of the site. This comprehensive and multidisciplinary monitoring program has produced a large and diverse data set. Managing and exploring such a complex data set for research purposes can be a cumbersome task. As a consequence, we developed an online data portal https://www.b-tu.de/chicken-creek/apps/datenportal/ to efficiently handle the data from Chicken Creek catchment. The portal was constructed using R programming language, Shiny package, and the accompanying local Linux server. This platform allows for efficient data discovery, download, visualization, and analysis. Data visualizations are freely available, while data storage is limited to the authorized users. In comparison with the commonly used data base tools, R-Shiny offers several advantages. As an open source package, this platform allows for constructing a web data platform in an interactive way taking into account the complexity and diversity of the data. The flexibility of this routine enables to make an efficient user-demand data portal rather than relying on predetermined outputs. It also offers flexibility in data handling by using many different R packages, rendering versatile and extensive functionalities. R-Shiny is particularly powerful in terms of statistical analyses. Although the Chicken Creek online data portal is complete and available, new features, and extended capabilities are under active development. The Chicken Creek data portal provides a comprehensive and reliable database to give scientists a fast and easy access to all collected data. Consequently, R-Shiny offers a great potential for future development of the web-based data portals to efficiently handle scientific data collected at different scales.}, language = {en} } @misc{SchaafGerwinHuettl, author = {Schaaf, Wolfgang and Gerwin, Werner and H{\"u}ttl, Reinhard F.}, title = {15 years of ecosystem development at Chicken Creek catchment: conceptual framework, surprises and conclusions}, series = {Geophysical Research Abstracts}, volume = {21}, journal = {Geophysical Research Abstracts}, pages = {1}, abstract = {After completion of the construction in 2005 (Gerwin et al. 2009), a major challenge was to develop and install a cross-disciplinary long-term monitoring program for the 6 ha area to record major environmental parameters adapted to the development of the site (Schaaf et al. 2013). During its first 15 years, Chicken Creek showed a very dynamic development (Elmer et al 2013). Whereas the abiotic geosystem of the first 2-3 years was characterized by heavy erosion and sediment transport, primary succession by invading vegetation and the unexpected formation of soil crusts within few years resulted in more biotic-abiotic feedbacks that controlled catchment hydrology. Our observations over a period of 15 years indicate that even minor variations in initial substrate characteristics (e.g. texture) can have lasting impacts on geomorphical, hydrological and biological development like erosion intensity, groundwater levels or establishment of vegetation patterns. The time-series of monitoring data combined with a structure model of the catchment (Gerke et al. 2013) allowed the closure of the water balance by relatively simple calculations of water storage volumes and the estimation of evapotranspiration (Schaaf et al. 2017). From these data three stages of ecosystem development were derived which are characterized by increasing influence of biota and increasing system complexity.}, language = {en} } @misc{GerwinSchaaf, author = {Gerwin, Werner and Schaaf, Wolfgang}, title = {Abiotic and biotic drivers of ecosystem development - results from Chicken Creek Catchment}, series = {EGU General Assembly 2020, Online, 4-8 May 2020}, journal = {EGU General Assembly 2020, Online, 4-8 May 2020}, doi = {10.5194/egusphere-egu2020-7216}, language = {en} } @misc{BadorreckSchaafGerwinetal., author = {Badorreck, Annika and Schaaf, Wolfgang and Gerwin, Werner and Moghadas, Davood and H{\"u}ttl, Reinhard F.}, title = {Long-term monitoring program at the constructed catchment "Chicken Creek"}, series = {Geophysical Research Abstracts}, volume = {21}, journal = {Geophysical Research Abstracts}, pages = {1}, abstract = {Ecosystems are characterized by high complexity and are dynamically changing by abiotic and biotic drivers such as climate, vegetation and soil fauna. Due to feedback processes between compartments, ecosystems show an inherent degree of locally heterogeneous properties and structures at multiple spatial and temporal scales. The constructed catchment "Chicken Creek" represents a unique and outstanding site to study an ecosystem at the initial stage of development. The catchment is located about 20 km south of the city of Cottbus (Germany). The 6-ha catchment area was built in 2005 of coarse-textured quaternary sediments from the adjacent lignite mine and forms a back- and foot-slope that flattens out to a pond. A clay liner of 2-3 m thickness seals the catchment at the bottom, allowing for the formation of a local water body fed by precipitation. After construction the site was left to an unrestricted and unmanaged succession to elucidate the role of structures und processes during the initial establishment of an ecosystem. To study processes of ecosystem development and newly emerging structures the Chicken Creek catchment is equipped with a comprehensive ecological monitoring network. A network of more than 40 wells and two weirs allow for recording groundwater levels, surface runoff and discharge. Meteorological parameters are recorded at three weather stations. Annual aerial photos and vegetation monitoring reveal the floral colonisation of the area. Here, we present the 12 years of diverse and extensive monitoring program which has been launched to measure hydrological, biological, meteorological, and pedological parameters during the ecological development of the catchment area.}, language = {en} } @misc{GerwinSchaaf, author = {Gerwin, Werner and Schaaf, Wolfgang}, title = {Dynamic interactions between abiotic and biotic ecosystem compartments - case study Huehnerwasser landscape observatory}, series = {Geophysical Research Abstracts}, volume = {21}, journal = {Geophysical Research Abstracts}, pages = {1}, abstract = {The Huehnerwasser catchment was constructed 2004-2005 in a post-mining landscape in Eastern Germany and was left for an unmanaged primary ecosystem succession. At the same time a comprehensive monitoring program was launched for observing the expected dynamic development of this 6 ha site. During the following years this artificially created system was subject to a series of fast changes with regard to morphology, hydrology or vegetation cover. In summary, these processes resulted in significant alterations of the original, initial system within a short period of time. This development can be divided up into single phases with dominating processes or groups of processes. A first phase was mainly characterized by interactions between abiotic system components such as water and substrate. However, already in this very early developmental phase biotic components in the form of microorganisms were a crucial system forming factor by means of biological soil crusts. This period was quickly replaced by a second phase with dominating hydrological processes. During this phase the local groundwater body of the system developed to its full extent. With the beginning of the present phase biota gained control of the system behavior. Particularly plants and related processes such as water uptake and evapotranspiration are now responsible for new modifications of the system. The Huehnerwasser site offers an example of young and highly dynamic ecological systems. This transitional development of a very young ecosystem contrasts with the behavior of mature ecosystems with slow and less pronounced changes unless the system is disturbed. In this paper we present insights into a unique landscape observatory which illustrates the dynamic nature of natural systems in fast motion.}, language = {en} } @misc{GerwinRepmannSchaafetal., author = {Gerwin, Werner and Repmann, Frank and Schaaf, Wolfgang and Raab, Thomas}, title = {Bodenver{\"a}nderungen durch Waldbr{\"a}nde - Stoffvorr{\"a}te und Stoffverlagerungen}, series = {Jahrestagung der DBG 2022 "Grenzen {\"u}berwinden, Skalen {\"u}berschreiten" 5. - 8. September 2022 in Trier}, journal = {Jahrestagung der DBG 2022 "Grenzen {\"u}berwinden, Skalen {\"u}berschreiten" 5. - 8. September 2022 in Trier}, pages = {48}, abstract = {Die zur{\"u}ckliegenden trocken-heißen Sommer haben im S{\"u}den Brandenburgs zu zahlreichen Br{\"a}nden in den dominierenden Kiefernw{\"a}ldern gef{\"u}hrt, einige davon mit katastrophalen Ausmaßen. Dazu geh{\"o}ren die extremen Brandereignisse 2018 bei Treuenbrietzen sowie 2019 bei J{\"u}terbog und Lieberose, die zusammen weit {\"u}ber 1000 ha Waldfl{\"a}che zerst{\"o}rt und dabei auch Ver{\"a}nderungen der betroffenen Waldb{\"o}den verursacht haben. Das seit Mai 2020 von der FNR gef{\"o}rderte Verbundvorhaben Pyrophob befasst sich mit den Auswirkungen von Waldbr{\"a}nden im S{\"u}den Brandenburgs auf die Wald{\"o}kosysteme und mit waldbaulichen Maßnahmen, die mittelfristig zu einer Verringerung der Brandanf{\"a}lligkeit der W{\"a}lder beitragen sollen. Im Rahmen des auf eine f{\"u}nfj{\"a}hrige Laufzeit ausgelegten Verbundvorhabens finden bodenkundliche Untersuchungen auf zw{\"o}lf Versuchsfl{\"a}chen bei Treuenbrietzen und J{\"u}terbog statt. An beiden Standorten werden unverbrannte Referenzfl{\"a}chen mit einbezogen. Erg{\"a}nzend konnten bei Lieberose bereits 2019 nur kurz nach dem Brandgeschehen erste Bodenuntersuchungen durchgef{\"u}hrt werden. Die untersuchten Brandfl{\"a}chen bei J{\"u}terbog und Lieberose sind als Totalreservate ausgewiesen, auf denen auch nach dem Brand waldbauliche Maßnahmen vollst{\"a}ndig unterbleiben. Auf den Fl{\"a}chen bei Treuenbrietzen wurden verschiedene Behandlungsvarianten durchgef{\"u}hrt, zu denen auf einem Teil der Fl{\"a}chen die vollst{\"a}ndige Entfernung der abgestorbenen B{\"a}ume geh{\"o}rte, w{\"a}hrend auf anderen Teilfl{\"a}chen Totholz auf der Fl{\"a}che verblieb. Ziel der bodenkundlichen Arbeiten in Pyrophob ist zum einen eine Charakterisierung der direkten Auswirkungen des Brandes auf Humus und Mineralboden hinsichtlich des Stoffbestandes und bodenbiologischer Prozesse. Zum anderen wird der Stoffaustrag aus dem Oberboden erfasst. Der etwaige Einfluss der unterschiedlichen waldbaulichen Vorgehensweise auf die Bodenverh{\"a}ltnisse wird dabei als ein Indikator f{\"u}r die Auswahl geeigneter Maßnahmen ber{\"u}cksichtigt. In den verschiedenen Untersuchungsvarianten des Vorhabens wurden zu diesem Zweck Humus- und Mineralbodenprofile untersucht. Zudem wurden Mischproben aus dem Ober- und Unterboden entnommen und auf ihren Stoffhaushalt hin analysiert. Auf jeder Untersuchungsfl{\"a}che wurden je drei frei dr{\"a}nende Kleinlysimeter in 10 cm Bodentiefe installiert, um die zeitlichen Ver{\"a}nderungen der Sickerwasserzusammensetzung und die durch den Brand initiierten Stoffaustr{\"a}ge aus dem Oberboden zu quantifizieren. Erg{\"a}nzend finden Untersuchungen zu m{\"o}glichen Auswirkungen der Br{\"a}nde auf bodenbiologische Prozesse wie Streuabbau und Stickstoffmineralisation statt.}, language = {de} } @misc{PohlSchaafGerwin, author = {Pohl, Lydia and Schaaf, Wolfgang and Gerwin, Werner}, title = {Eisenhydroxidschl{\"a}mme und Tone als m{\"o}gliche Bestandteile neuartiger Bodenhilfsstoffe}, series = {Jahrestagung der DBG 2022 "Grenzen {\"u}berwinden, Skalen {\"u}berschreiten" 5. - 8. September 2022 in Trier}, journal = {Jahrestagung der DBG 2022 "Grenzen {\"u}berwinden, Skalen {\"u}berschreiten" 5. - 8. September 2022 in Trier}, pages = {39}, abstract = {Die Lausitz z{\"a}hlt schon heute zu einer der niederschlag{\"a}rmsten Regionen in Deutschland. Durch den Klimawandel wird diese Situation noch weiter verst{\"a}rkt und die Wahrscheinlichkeit von extremen Trockenperioden w{\"a}hrend der Hauptvegetationsphase wird zunehmen. Einer der zentralen bodenkundlichen Herausforderungen wird es somit sein, die geringe Wasserhaltekapazit{\"a}t der vor allem sandigen B{\"o}den der Region zu steigern. In dem Verbundvorhaben StabilOrg wird daher die Entwicklung neuartiger Bodenhilfsstoffe auf der Basis regional in der Lausitz verf{\"u}gbarer Ressourcen untersucht. Durch die Tagebauaktivit{\"a}ten in der Region fallen große Mengen an Eisenhydroxidschl{\"a}mmen (EHS) an. Hierbei lassen sich 3 Herkunftsschwerpunkte definieren: I) nat{\"u}rliche Eisenhydroxidsedimente aus Fließen, II) EHS aus Grubenwasserbehandlungsanlagen, die durch Kalkung gef{\"a}llt wurden und III) EHS aus Trinkwassergewinnungsst{\"a}tten, die gekalkt und zus{\"a}tzlich durch chemische Flockungsmittel behandelt wurden. Diese sollen mit verschiedenen Tonen und Lehmen als weitere anorganische Komponenten, sowie mit organischem Material (Kompost) gemischt werden. Ziel ist die Herstellung von anorganisch-organische Mischsubstraten, die die bodenphysikalischen Eigenschaften positiv beeinflussen. Erste Untersuchungsergebnisse zeigen, dass sich die untersuchten EHS je nach Behandlung in ihrer mineralogischen Zusammensetzung, sowie den physikochemischen Parametern deutlich unterscheiden. In ersten Experimenten wird untersucht, wie sich diese Mischungen auf die Wasserhaltekapazit{\"a}t von sandigen B{\"o}den auswirken und ob sich dabei Unterschiede zwischen den EHS und in Kombination mit den anderen Ausgangssubstanzen aufzeigen lassen.}, language = {de} }