@misc{XiaoWangFanetal., author = {Xiao, Bo and Wang, Huifang and Fan, Jun and Fischer, Thomas and Veste, Maik}, title = {Biological soil crusts decrease soil temperature in summer and increase soil temperature in winter in semiarid environment}, series = {Ecological Engineering}, volume = {58}, journal = {Ecological Engineering}, issn = {0925-8574}, doi = {10.1016/j.ecoleng.2013.06.009}, pages = {52 -- 56}, abstract = {In hot and wet conditions in summer, the biological soil crusts (BSCs) decreased soil temperature by up to 11.8 °C, 7.5 °C, 5.4 °C, and 3.2 °C at surface, 5 cm, 15 cm, and 30 cm, respectively; while in cold and dry conditions in winter the BSCs increased soil temperature by up to 1.2 °C, 1.2 °C, and 1.1 °C at 5 cm, 15 cm, and 30 cm, respectively. The daily mean soil temperatures of the BSCs in a whole year were averagely increased by 0.57 ± 0.04 °C, 0.31 ± 0.04 °C, and 0.22 ± 0.04 °C at 5 cm, 15 cm, and 30 cm, respectively. The effects of the BSCs on soil temperature were positively correlated with air temperature and soil moisture, and decreased with soil depth from surface to deep soil. We concluded that BSCs relieved the extreme hot and cold soil micro-environments in desert ecosystem to some extent. Therefore their effects on soil temperature are positive for improving water and nutrient availability and biological community structure, thus decreasing susceptibility to desertification. These results would be helpful for understanding the ecological and hydrological functions of BSCs in semiarid environment.}, language = {en} } @misc{KidronFischerXiao, author = {Kidron, Giora J. and Fischer, Thomas and Xiao, Bo}, title = {The ambivalent effect of biocrusts on evaporation: Can the contradictory conclusions be explained? A review}, series = {Geoderma}, volume = {Vol. 416}, journal = {Geoderma}, issn = {1872-6259}, doi = {10.1016/j.geoderma.2022.115805}, pages = {13}, language = {en} } @misc{XiaoVeste, author = {Xiao, Bo and Veste, Maik}, title = {Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China}, series = {Applied Soil Ecology}, volume = {117-118}, journal = {Applied Soil Ecology}, doi = {10.1016/j.apsoil.2017.05.005}, pages = {165 -- 177}, abstract = {Various ecological functions of biocrusts are mostly determined by their bacterial and fungal abundance and community diversity, which has not yet been fully investigated. To provide more insights into this issue, we collected samples of moss biocrusts, fixed sand, and mobile sand from a watershed with semi-arid climate on the Loess Plateau of China. The relative abundances and community diversities of soil bacteria and fungi of the samples were determined using high-throughput DNA sequencing. Finally, we analyzed the characteristics of bacterial and fungal community of the moss biocrusts and their relationships to the content of soil nutrients. Our results showed that the moss biocrusts had 1048 bacterial OTUs (operational taxonomic units) and 58 fungal OTUs, and their Shannon diversity indexes were 5.56 and 1.65, respectively. The bacterial community of the moss biocrusts was dominated by Acidobacteria (24.3\%), Proteobacteria (23.8\%), Chloroflexi (15.8\%), and Actinobacteria (14.5\%), and their fungal community was dominated by Ascomycota (68.0\%) and Basidiomycota (23.8\%). The moss biocrusts had far more bacterial OTUs (≥56.9\%) but similar number of fungal OTUs as compared with the uncrusted soil, and their Sorenson's similarity coefficients of bacterial and fungal communities were less than 0.768 and 0.596, respectively. Moreover, the contents of soil nutrients (C, N, P) were significantly correlated with the OTU numbers of bacteria and the relative abundances of bacteria and fungi. Our results indicated that moss biocrusts harbor a large number and high diversity of bacteria and fungi, and these diversified bacteria and fungi play important roles in ecosystem functioning through improving soil fertility.}, language = {en} } @misc{XiaoHuVesteetal., author = {Xiao, Bo and Hu, Kelin and Veste, Maik and Kidron, Giora J.}, title = {Natural recovery rates of moss biocrusts after severe disturbance in a semiarid climate of the Chinese Loess Plateau}, series = {Geoderma}, volume = {337}, journal = {Geoderma}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2018.09.054}, pages = {402 -- 412}, abstract = {Biocrusts are vulnerable to large scale disturbances including trampling activities, and their recovery rates are highly variable with estimates fluctuating by more than one order of magnitude, from<5 years (very fast) to>250 years (very slow). Also, the development of microbial abundance and community diversity of biocrusts after disturbances is poorly understood. In a semiarid climate of the Chinese Loess Plateau, we conducted a recovery experiment on well-developed moss biocrusts after a severe disturbance, during which the entire upper 3 cm of the surface was removed. In the following nine years, the general characteristics and microbial community of the recovering and undisturbed biocrusts as well as a substrate with no crust (bare sand) were periodically determined. Through linear or logistic extrapolation of the observed recovery rates, the recovery time of the biocrusts after disturbance was estimated by both biocrust characteristics and microbial community. Recovery time yielded the following estimates: a) coverage within 3 years, b) thickness within 8 years, c) biomass within 9-13 years, and d) cultivable microbial density within 11-13 years. More importantly, the recovery time of the disturbed moss-biocrusts estimated by the number of bacteria and fungi was ~10 and 20 years, respectively, and that estimated by the bacterial and fungal community diversity was 12-14 and 12-16 years, respectively. In conclusion, moss biocrusts would take 15-20 years to achieve full recovery, which was shorter than many previously published estimates that regarded biocrusts and especially moss-dominated biocrusts to have a long recovery time of hundreds of years. However, it should be also kept in mind that very fast recovery (< 5 years) of biocrusts was less reliable because such estimations are mostly based on visual cover only rather than on the multi-variables of the recovering biocrusts.}, language = {en} }