@misc{VesteLittmannKunnekeetal., author = {Veste, Maik and Littmann, Thomas and Kunneke, Anton and Du Toit, Ben and Seifert, Thomas}, title = {Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa}, series = {Plant, Soil and Environment}, volume = {66}, journal = {Plant, Soil and Environment}, number = {3}, issn = {1214-1178}, doi = {10.17221/616/2019-PSE}, pages = {119 -- 127}, abstract = {Under the conditions of climate change in South Africa, ecological and technical measures are needed to reduce the water consumption of irrigated crops. Windbreak hedges are long-rated systems in agriculture that significantly reduce wind speed. Their possibilities to reduce evapotranspiration and water demand are being investigated at a vineyard in the Western Cape Province, South Africa. Detailed measurements of meteorological parameters relevant for the computation of reference and crop-specific evapotranspiration following the FAO 56 approaches within a vineyard in the Western Cape Province of South Africa have shown the beneficial effect of an existing hedgerow consisting of 6 m high poplars (Populus simonii (Carri{\`e}re) Wesm.). With reference to a control station in the open field, the mean wind speed in a position about 18 m from the hedgerow at canopy level (2 m) was reduced by 27.6\% over the entire year and by 39.2\% over the summer growing season. This effect leads to a parallel reduction of reference evapotranspiration of 15.5\% during the whole year and of 18.4\% over the growing season. When applying empirical crop-specific Kc values for well-irrigated grapes, the reduction of evapotranspiration is 18.8\% over the summer growth period. The introduced tree shelterbelts are a suitable eco-engineering approach to reduce water consumption and to enhance water saving in vineyards.}, language = {en} } @misc{SheppardBohnReckziegelBorrassetal., author = {Sheppard, Jonathan P. and Bohn Reckziegel, Rafael and Borrass, Lars and Chirwa, Paxie W. and Cuaranhua, Claudio J. and Hassler, Sibylle K and Hoffmeister, Svenja and Kestel, Florian and Maier, Rebekka and M{\"a}licke, Mirko and Morhart, Christopher and Ndlovu, Nicholas P. and Veste, Maik and Funk, Roger and Lang, Friedericke and Seifert, Thomas and du Toit, Ben and Kahle, Hans-Peter}, title = {Agroforestry: An Appropriate and Sustainable Response to a Changing Climate in Southern Africa?}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {17}, doi = {10.3390/su12176796}, abstract = {Agroforestry is often discussed as a strategy that can be used both for the adaptation to and the mitigation of climate change effects. The climate of southern Africa is predicted to be severely affected by such changes. With agriculture noted as the continent's largest economic sector, issues such as food security and land degradation are in the forefront. In the light of such concerns we review the current literature to investigate if agroforestry systems (AFS) are a suitable response to the challenges besetting traditional agricultural caused by a changing climate. The benefits bestowed by AFS are multiple, offering ecosystem services, influence over crop production and positive impacts on rural livelihoods through provisioning and income generation. Nevertheless, knowledge gaps remain. We identify outstanding questions requiring further investigation such as the interplay between trees and crops and their combination, with a discussion of potential benefits. Furthermore, we identify deficiencies in the institutional and policy frameworks that underlie the adoption and stimulus of AFS in the southern African region. We uphold the concept that AFS remains an appropriate and sustainable response for an increased resilience against a changing climate in southern Africa for the benefit of livelihoods and multiple environmental values}, language = {en} }