@incollection{RoetterNkomoMeyerzuDreweretal., author = {R{\"o}tter, Reimund P. and Nkomo, Mandla and Meyer zu Drewer, Johannes and Veste, Maik}, title = {Agricultural Land-Use Systems and Management Challenges}, series = {Sustainability of Southern African Ecosystems under Global Change}, booktitle = {Sustainability of Southern African Ecosystems under Global Change}, editor = {Maltitz, Graham P. von and Midgley, Guy F. and Veitch, Jennifer and Br{\"u}mmer, Christian and Viehberg, Finn A. and Veste, Maik}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-10947-8}, doi = {10.1007/978-3-031-10948-5_20}, pages = {551 -- 586}, abstract = {This chapter aims at providing an overview of the diversity of agroecological conditions, features of main farming systems, agricultural land use, its dynamics and drivers during the last two decades as well as major threats in ten countries of southern Africa (SA10). Based on this, we attempt to identify the resultant challenges for sustainable land management and outline potential interventions with a focus on smallholder farmers. By analyzing cropland dynamics during 2000-2019, we show how land use has been shaped by climate, demographic development, economic imperatives and policy realities. Concrete examples of these complex interactions illustrate both considerable shrinkage in South Africa and Zimbabwe or expansion of cropland in Mozambique and Zambia. During the past 20 years, cropland increased by 37\% on average across SA10 mainly at the expense of forestland—showing huge spatiotemporal heterogeneity among countries. Most smallholders face shrinking farm size and other resource limitations that have resulted in soil nutrient mining and low agricultural productivity—a highly unsustainable situation. We conclude with an outlook on potential transformation pathways ("TechnoGarden" and "AdaptiveMosaic") for the near future and thereby provide a frame for further studies on sustainable land management options under given local settings.}, language = {en} } @incollection{MaltitzBieriMidgleyetal., author = {Maltitz, Graham P. von and Bieri, Mari and Midgley, Guy F. and Veitch, Jennifer and Br{\"u}mmer, Christian and R{\"o}tter, Reimund P. and Veste, Maik}, title = {Coupled Earth System and Human Processes: An Introduction to SPACES and the Book}, series = {Sustainability of Southern African Ecosystems under Global Change}, booktitle = {Sustainability of Southern African Ecosystems under Global Change}, editor = {Maltitz, Graham P. von and Midgley, Guy F. and Veitch, Jennifer and Br{\"u}mmer, Christian and R{\"o}tter, Reimund P. and Viehberg, Finn A. and Veste, Maik}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-10947-8}, doi = {10.1007/978-3-031-10948-5}, pages = {3 -- 21}, abstract = {Ecosystems in southern Africa are threatened by numerous global change forces, with climate change being a major threat to the region. Many climate change impacts and environmental-based mitigation and adaptation options remain poorly researched in this globally important biodiversity hotspot. This book is a collection of chapters covering research undertaken in southern Africa by the German Federal Ministry of Education and Research's (BMBF) SPACES and SPACES II programs. SPACES II covered a wide range of global change-linked environmental issues ranging in scope from the impacts of ocean currents on global climate systems through to understanding how small-scale farmers may best adapt to the impacts of climate change. All the research has identified policy implications, and the book strives for a balance between presenting the detailed science underpinning the conclusions as well as providing clear and simple policy messages. To achieve this, many chapters in the book contextualize the issues through the provision of a mini-review and combine this with the latest science emulating out of the SPACES II program of research. The book therefore consolidated both past and the most current research findings in a way that will be of benefit to both academia and policy makers.}, language = {en} }