@inproceedings{MantovaniVesteFreese, author = {Mantovani, Dario and Veste, Maik and Freese, Dirk}, title = {Biomass production and water use of Black Locust (Robinia pseudoacacia L.) for short-rotation plantation}, series = {EGU General Assembly 2012, held 22-27 April, 2012 in Vienna}, booktitle = {EGU General Assembly 2012, held 22-27 April, 2012 in Vienna}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, language = {en} } @inproceedings{MantovaniVesteFreese, author = {Mantovani, Dario and Veste, Maik and Freese, Dirk}, title = {Black locust (Robinia pseudoacacia L.) adaptability and plasticity to drought}, series = {2nd European Agroforestry Conference: Integrating Science and Policy to Promote Agroforestry in Practice, June 2014, Cottbus, Germany}, booktitle = {2nd European Agroforestry Conference: Integrating Science and Policy to Promote Agroforestry in Practice, June 2014, Cottbus, Germany}, editor = {Palma, Joao H. N.}, isbn = {978-972-97874-4-7}, pages = {264 -- 265}, abstract = {Robinia pseudoacacia L. is a pioneer tree species which grows under a wide range of edaphic and climatic conditions. It is native from North America and its original range is a climatic region classified as humid to sub-humid, with a mean annual precipitation of 1.020 to 1.830 mm. However, in Central Europe the species has proven to be relatively drought tolerant in comparison to other temperate deciduous tree species. In the State of Brandenburg (Germany) for instance, with a continental climate and annual precipitation below 600 mm, the species has been successfully cropped for wood production for more than 250 years. The tree notably grows also in post-mining recultivated sites where soil water availability is limited and in spring and summer drought can occur. The importance of the species has increased over the lasts decades, after the CO2 reduction policy spread across the world, just as did the need for further sources for renewable energy. Therefore, due to its adaptability to water constraints, its fast growing and resprouting rate, together with the ability of nitrogen fixation, black locust could become a key species for short-rotation plantation on marginal land. Several studies have been already carried out to quantify the production and water use efficiency of the black locust. However, the effect of water scarcity on biomass production and the plant's response to drought stress has still to be examined. In ourinvestigation we aim to evaluate the growth performance and the ecophysiological response of black locust to water limitation. The study of the soil-plant-atmosphere system for the evaluation of the relation between water availability, atmospheric evaporative demand and plant water status is critical to identify the ecophysiological adaptation and growth response in relation to different edaphic and climatic conditions. Different irrigation regimes and cycles of drought were chosen, to test the plant's performance in a lysimeter experiment for the duration of two vegetation periods, under semi-controlled environmental conditions. The results obtained from studies were satisfactory. We assessed the drought tolerance and resilience of black locust, together with its water use efficiency. Both at whole-plant and leaf level the link between the soil water retention, plant water status and growth rate has been elucidated and the intertwined relation between primary production, transpiration, CO2 uptake and water limitation, together with the evaporative atmospheric demand, has been clarified.}, language = {en} } @inproceedings{MantovaniVesteBoehmetal., author = {Mantovani, Dario and Veste, Maik and B{\"o}hm, Christian and Freese, Dirk}, title = {Black locust (Robinia pseudoacacia L.) in agroforestry systems: spatial and temporal variation of the plant water status and growth}, series = {2nd European Agroforestry Conference: Integrating Science and Policy to Promote Agroforestry in Practice, June 2014, Cottbus, Germany}, booktitle = {2nd European Agroforestry Conference: Integrating Science and Policy to Promote Agroforestry in Practice, June 2014, Cottbus, Germany}, editor = {Palma, Joao H. N.}, isbn = {978-972-97874-4-7}, pages = {263 -- 264}, abstract = {Short-rotation forestry and agroforestry systems have the potential to become an ecologically valuable and economically profitable land use alternative on marginal lands. Therefore, our project focuses on determining the water demand for biomass production of black locust in the Lusatia region (Eastern Germany). The area is characterized by relative low annual rainfall (560-600 mm/yr) and drought periods during spring and summer. Black locust (Robinia pseudoacacia L.) is planted in short rotation plantations as well as in agroforestry systems at reclaimed post-mining sites of the opencast mining area "Welzow S{\"u}d" and on a conventionally managed field near the town Forst (both study sites are located about 120 km to the south of Berlin). Due to mining activities the ground water table in "Welzow-S{\"u}d" is below 100 m, while on the field site in Forst the ground water table is about 2 m below the soil surface. Because of the water accessibility directly affecting the yield, it is crucial to identify the spatial variation of the soil water availability and its influence on black locust growth. The main question of this study is how the drought periods affect black locust's growth and recovery and about the drought mitigation effect obtainable by an accessible water table. The growth rate is being estimated monthly by measuring the maximum height and the trunk diameter at 10 and 130 cm. Furthermore, several trees are equipped with dendrometers to record their diameter increment in daily intervals. The pre-dawn water potential for selected trees is evaluated periodically to quantify plant water stress and relate it to the growth pattern. Water availability and microclimatic condition are monitored continuously. At the end of the vegetation period, information gathered from the field will be used to develop a growth model to link the soil water availability and plant water status with the growth rate of the trees.}, language = {en} } @inproceedings{MantovaniVesteFreese, author = {Mantovani, Dario and Veste, Maik and Freese, Dirk}, title = {Biomass production in agro-­-systems: Is black locust (Robinia pseudoacacia L.) the right choice?}, series = {Gf{\"O} 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany}, booktitle = {Gf{\"O} 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany}, editor = {Jeltsch, Florian and Joshi, Jasmin}, pages = {28 -- 29}, abstract = {Currently, black locust (Robinia pseudoacacia L.) is an important tree species in Central and Eastern Europe for the production of biomass in short-rotation plantations. Being a ruderal species and relatively drought tolerant compared to other broad leaf trees, its use in agroforestry systems will increase. That is particularly true for marginal landscapes characterized by adverse edaphic conditions, where the soil water availability is limited and in summer drought can occur. Several studies have been carried out on the subject of the black locust primary production; however there are still open questions associated with its water consumption and the biomass production, in relation to the soil water availability. In order to investigate the soil-plant-atmosphere system interactions, in our studies the links between the growth rate, water use efficiency and the ecophysiological response have been examined in a two year lysimeter experiment. The two years old black locust plants were selected from a recultivated post-mining area (Welzow S{\"u}d, Lusatia, Brandenburg) and established in a 100 L wicked lysimeter, installed under a light transmissive roof to avoid uncontrolled water input. During the first vegetation period, the trees were maintained constantly under three different soil moisture regimes (well-watered, moderate, drought), in relation to the hydrostatic state of the lysimeters. For the second vegetation period instead, the plants were subjected to two different irrigation cycles (long term drought stress, short term drought stress), in relation of the drought stress and recovering time duration. The results were satisfactory. At whole plant level the water use efficiency, the growth rate under different soil moisture conditions and the morphological adaptation to drought condition were assessed. In addition, at leaf level we elucidated the relation between the soil moisture together with the atmospheric evaporative demand and the ecophysiological performance in terms of H2O and CO2 rate variation. From the results emerged that the black locust cultivar may have a positive or negative effect on the ecosystem function, depending on the water availability of the areas in object. The tree can tolerate periods of drought by reducing its transpiration rate, yet it is not to be considered a water saving trees species in a well watered condition.}, language = {en} } @inproceedings{HalkeGypserMantovanietal., author = {Halke, Christian and Gypser, Stella and Mantovani, Dario and Lebzien, Stefan and Freese, Dirk and Veste, Maik}, title = {Yield, transpiration and growth of the new bioenergy crop IGNISCUM Candy under different water regimes}, series = {Gf{\"O} 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany}, booktitle = {Gf{\"O} 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany}, editor = {Jeltsch, Florian and Joshi, Jasmin}, pages = {32 -- 33}, abstract = {There is a growing global need to produce more energy and reducing greenhouse gas emissions. One possible source of renewable energy in parts of Europe is the use of crop for bioenergy production. Currently, maize dominates the biogas production. For a diversified production of substrates alternative crops needs to be evaluated for their sustainable utilization and ecological integration into agro-systems. The new bioenergy plants IGNISCUM Candy and IGNISCUM Basic are cultivars of the Sakhalin Knotweed (Fallopia sachalinensis, Fam. Polygonaceae), which are characterized by a high annual biomass production. Information on the crop production of this species is rare. Hence, understanding plant response to the combinations of water and nutrients availability is crucial for the development of sustainable plant production. In greenhouse experiments we investigate the interrelations between nutrient supply, biomass production, and plant ecophysiology. For the determination of yield-transpiration relations at whole plant level we used a wick lysimeter system, which allows us to study plant growth under controlled water regimes and to calculate the plant transpiration. The irrigation is supplied by an automatic drip irrigation system and computer-controlled in relation to the volumetric soil water content. Four different water treatments associated to the SWC range from well-watered to drought stressed plants. The influence of plant sizes on plant water use was investigated under different nitrogen supply. The fertilizer applied is calcium ammonium nitrate (N) and the rates for the four treatments are 0, 50, 100, 150 kg N/ha at the beginning of the growing season. Plant transpiration is calculated on the basis of water input, storage and drainage in weekly intervals. The cumulative transpiration of the plants during the growing season is between 49 L (drought stressed) and 141 L (well-watered) per plant, respectively. We calculated a transpiration coefficient of 525 Liters per kg dry biomass.}, language = {en} } @inproceedings{MantovaniVesteBoldtBurischetal., author = {Mantovani, Dario and Veste, Maik and Boldt-Burisch, Katja and Fritsch, Simone}, title = {Black locust (Robinia pseudoacacia L.) root growth response to different irrigation regimes}, series = {Gf{\"O} 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany}, booktitle = {Gf{\"O} 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany}, editor = {Jeltsch, Florian and Joshi, Jasmin}, pages = {33 -- 34}, abstract = {Robinia pseudoacacia L. is a pioneer tree species native from North America. Its original range is a climatic region classified as humid to sub-humid, with a mean annual precipitation of 1020 to 1830 mm. However, it grows under a wide range of edaphic and climatic conditions and the species has proven to be relatively drought tolerant. In central Europe, with a continental climate, the species has been successfully cropped for biomass production also on marginal land, even in post-­-mining areas characterized by water limitation and harsh edaphic conditions. Due its drought tolerance, fast resprouting rate and its ability to live in symbiosis with Rhizobia and thus fix atmospheric nitrogen, black locust could become a key species for short-­-rotation plantation on marginal land. Several studies have been already carried out to quantify the black locust above ground production and its water use efficiency. However, the relation between the black locust biomass allocation, root system development and plant water use has still to be examined. In our study we evaluated the drought stress effect on black locust below ground biomass production, root distribution, and the root and rhizobial association. Different irrigation regimes were chosen to test the plant's performance in a lysimeter experiment, under semi-­-controlled environmental conditions, for the duration of two vegetation periods. From the results obtained we determined the root biomass allocation under different irrigation regimes and identified the close relation between the soil water condition and the rhizobial association.}, language = {en} } @inproceedings{MantovaniFreeseVesteetal., author = {Mantovani, Dario and Freese, Dirk and Veste, Maik and H{\"u}ttl, Reinhard F.}, title = {Modified wick lysimeters for critical water use efficiency evaluation and yield crop modelling}, series = {Bericht, 14. Lysimetertagung, am 3. und 4. Mai 2011 am LFZ Raumberg-Gumpenstein}, booktitle = {Bericht, 14. Lysimetertagung, am 3. und 4. Mai 2011 am LFZ Raumberg-Gumpenstein}, publisher = {LFZ Raumberg-Gumpenstein}, address = {Irdning}, isbn = {978-3-902559-61-6}, pages = {245 -- 248}, language = {en} }